Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny owls take flight

Graduate students Jun Yao and Noe Alvarez grew millions of carbon nanotubes to produce the Rice Owl and wordmark, seen through an electron scanning microscope. The bottom photo shows the forest of tubes that make up the owl's eye. PHOTOS BY JUN YAO, NOE ALVAREZ
Graduate students Jun Yao and Noe Alvarez grew millions of carbon nanotubes to produce the Rice Owl and wordmark, seen through an electron scanning microscope. The bottom photo shows the forest of tubes that make up the owl's eye. PHOTOS BY JUN YAO, NOE ALVAREZ

Abstract:
Grad students' nano-owls began as a lark, became fitting swan song

Tiny owls take flight

Houston, TX | Posted on December 30th, 2009

There are so many cool things about these images that it's hard to know where to begin. First, they're very tiny - about twice the width of a human hair.

There's the fact that they're made of something much smaller: carbon nanotubes grown in carpets via a process developed at Rice. Each nanotube is about 50,000 times smaller than the diameter of a hair.

And then there's Jun Yao's steady hand. The Rice graduate student, at the behest of his friend and colleague Noe Alvarez, painstakingly drew the Rice Owl (as well as the wordmark) with a mouse, tracing the beloved image into a computer program that controls an electron beam.

The first nano-owls were designed by Yao, a student in the labs of James Tour, Doug Natelson and Lin Zhong, and grown by Alvarez, who recently earned his doctorate at Rice, to accompany the latter's thesis presentation. "I really wanted to use the Rice logo made of nanotubes on one of my slides for the Ph.D. defense committee, and we finished it in time, but the electron scanning microscope was broken," he recalled.

But Alvarez, who said he and Yao made the nano-owls for fun, still wanted to get a good look at their creations, which by his calculations consist of more than 10 million nanotubes. When he noticed the now-repaired microscope sitting idle earlier this week, he grabbed the opportunity to make a few portraits of the tiniest owl ever.

Yao explained the process involved layering a silicon wafer with a 10-nanometer-thick alumina substrate and a slim coating of liquid poly(methyl methacrylate), aka PMMA. "We bake this stuff at 180 degrees C for two minutes to crystallize the liquid," he said. "We already had the image in the computer, so we could have the e-beam trace the pattern into the PMMA."

They used a developer to wash away the PMMA that had been exposed to the electron beam, followed by deposition of a .5 nanometer iron catalyst film and then an acetone bath to remove the catalyst outside the nano-owl pattern. "Then we put it in the reactor, where the carpet grows in about 15 minutes," Alvarez said.

To the naked eye, the nano-owls are barely visible dots. "But if you compare this to a corn field, which typically has 30,000 plants per acre, the nano-owl alone is equivalent to 350 acres of corn plantation," he said.

Alvarez, who worked in the labs of co-advisers Tour and Robert Hauge, a pioneer in the growth of nanotubes bundles, will leave Rice soon for a postdoctoral position at Japan's National Institute of Advanced Industrial Science and Technology.

That makes his nano-owls a wonderful parting gift. And for that we give very large thanks.

####

For more information, please click here

Contacts:
B.J. Almond
Director, Department of News and Media Relations

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE