Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A 'fountain of youth' for stem cells?

Abstract:
Researchers from the University of Hong Kong and the Massachusetts Institute of Technology have published a study in the current issue of Cell Transplantation (18:9), now freely available on line at www.ingentaconnect.com/content/cog/ct, that explores ways to successfully keep stem cells "forever young" during implantation by slowing their growth, differentiation and proliferation.

A 'fountain of youth' for stem cells?

Tampa, FL | Posted on December 29th, 2009

"The successful storage and implantation of stem cells poses significant challenges for tissue engineering in the nervous system, challenges in addition to those inherent to neural regeneration," said Dr. Ellis-Behnke, corresponding author. "There is a need for creating an environment that can regulate cell activity by delaying cell proliferation, proliferation and maturation. Nanoscaffolds can play a central role in organ regeneration as they act as templates and guides for cell proliferation, differentiation and tissue growth. It is also important to protect these fragile cells from the harsh environment in which they are transplanted."

According to Dr. Ellis-Behnke, advancements in nanotechnology offer a "new era" in tissue and organ reconstruction. Thus, finding the right nano-sized scaffold could be beneficial, so the research team developed a "self-assembling nanofiber scaffold" (SAPNS), a nanotechnology application to use for implanting young cells.

"Fine control of the nanodomain will allow for increased targeting of cell placement and therapeutic delivery amplified by cell encapsulation and implantation," explained Dr. Ellis-Behnke.

The research team created the scaffold to provide a substrate for cell adhesion and migration and to influence the survival of transplanted cells or the invasion of cells from surrounding tissue. The SAPNS they developed appear to slow the growth rate and differentiation of the cells, allowing the cells time to acclimate to their new environment.

"That delay is very important when the immune system tries attacking cells when they are placed in vivo," he further explained.

By manipulating both cell density and SAPNS concentration, the researchers were able to control the nanoenvironment surrounding PC 12 cells (a cell line developed from transplantable rat cells that respond to nerve growth factor), Schwann cells (glial cells that keep peripheral nerve fibers alive) and neural precursor cells (NPCs) and also control their proliferation, elongation, differentiation and maturation in vitro. They extended the method to living animals with implants in the brain and spinal cord.

The researchers concluded that the use of a combination of SAPNS and young cells eliminated the need for immuno-suppressants when cells were implanted in the central nervous system.

"Implanted stem cells are adversely susceptible to their new environment and quickly get old, but this study suggests a solution to conquer this problem," said Prof. Shinn-Zong Lin, professor of Neurosurgery at China University Medical Hospital, Taiwan and Chairman of the Pan Pacific Symposium on Stem Cell Research where part of this work was first presented. "The self-assembling nanofiber scaffold (SAPNS) provides a niche for the encapsulated stem cells by slowing down their growth, differentiation and proliferation, as well as potentially minimizing the immune response, thus enhancing the survival rate of the implanted stem cells. This allows the implanted stem cells to "stay forever young" and extend their neurites to reach distant targets, thereby re-establishing the neural circuits

This combination of stem cells and SAPNS technologies gives a new hope for building up younger neural circuit in the central neural system."

####

Contacts:
Rutlege Ellis-Behnke
Dept. of Anatomy
The University of Hong Kong
Li Ka Shing Faculty of Medicine
1/F Laboratory Block
21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
Tel: 852-2819-9205
fax: 852-2817-0857


Department of Brain & Cognitive Sciences
Massachusetts Institute of Technology 43 Vassar Street, Cambridge, MA 02139 Tel: (ofc) 1-617-253-4556
(cell) 1-857-212-9589

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Self Assembly

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project