Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Turning metal black more than just a novelty

Guo in lab at the Institute of Optics at the University of Rochester (photo credit Richard Baker, University of Rochester)
Guo in lab at the Institute of Optics at the University of Rochester (photo credit Richard Baker, University of Rochester)

Abstract:
University of Rochester scientists discover that laser technique used to change the colors of metals could have important implications for medicine.

Turning metal black more than just a novelty

Rochester, NY | Posted on December 28th, 2009

University of Rochester optics professor Chunlei Guo made headlines in the past couple of years when he changed the color of everyday metals by scouring their surfaces with precise, high-intensity laser bursts.

Suddenly it was possible to make sheets of golden tungsten, or black aluminum.

A recent discovery in Guo's lab has shown that, beyond the aesthetic opportunities in his find lie some very powerful potential uses, like diagnosing some diseases with unprecedented ease and precision.

Along with his research assistant, Anatoliy Vorobyev, Guo has discovered that the altered metals can detect electromagnetic radiation with frequencies in the terahertz range (also known as T-rays), which have been challenging, if not impossible, to detect prior to his discovery.

"When we turned metals black, we knew that they became highly absorptive in the visible wavelength range because the altered metals appear pitch black to the eye. Here, we experimentally demonstrated that the enhanced absorption extends well into the far infrared and terahertz frequencies," Guo said.

With wavelengths shorter than microwaves, but longer than infrared rays, T-rays occupy a place in the electromagnetic spectrum that is capable of exciting rotational and vibrational states of organic compounds, like pathogens. This quality could allow doctors and biomedical researchers to get previously impossible glimpses of diseases on the molecular level.

In addition, unlike X-rays, T-rays are non-ionizing, which means that people who are exposed to them don't risk the possible tissue damage that can result from X-rays.

University of California, Berkeley, bioengineering Professor Thomas Budinger says terahertz radiation is like much-higher-frequency radar, except that it theoretically can allow its users to see intricate details of tissue architecture, on the scale of one-thousandth of a millimeter and smaller, instead of large objects like airplanes and boats.

"Terahertz electromagnetic radiation has the capability to interrogate tissues at the cellular level. If applied within microns of the subject of interest, this form of imaging has the theoretical capability to detect properties of molecular assemblages that could be attributes of disease states," Budinger said.

What made terahertz radiation so difficult to detect in the past was that typical materials do not readily absorb that frequency. However, after undergoing Guo's femtosecond structuring technique, metals become over 30 times more absorptive.

The key to creating the black metal in terahertz is a beam of ultra-brief, ultra-intense laser pulses called femtosecond laser pulses. The laser burst lasts less than a quadrillionth of a second. To get a grasp of that kind of speed, consider that a femtosecond is to a second what a second is to about 32 million years. During its brief burst, Guo's laser unleashes as much power as the entire grid of North America onto a spot the size of a needle point. That intense blast forces the surface of the metal to undergo some dramatic changes and makes them extremely efficient in absorbing terahertz radiation.

####

About University of Rochester
The University of Rochester (www.rochester.edu) is one of the nationís leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

For more information, please click here

Contacts:
Alan Blank

585-275-2671

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Nanomedicine

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Nanion Technologies Appoints James Costantin as Director of Customer Relations: Nanion is pleased to announce the appointment of Dr. James Costantin as Director of Customer Relations at Nanion Technologies Inc. March 31st, 2015

Nanomedicine shines light on combined force of nanomedicine and regenerative medicine March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Announcements

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Tools

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

PIHera: Largest Family of Piezo Stage Scanners with 10X Greater Positioning Area March 31st, 2015

New Applications Brochure on Complex Motion Control Systems for Scientific Research March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE