Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB Researchers Develop Drug Delivery System Using Nanoparticles and Lasers

The near-infrared laser pathway into the cell culture plate, traced by visible laser for photo. photo credit: Rod Rolle
The near-infrared laser pathway into the cell culture plate, traced by visible laser for photo. photo credit: Rod Rolle

Abstract:
Researchers at UC Santa Barbara have developed a new way to deliver drugs into cancer cells by exposing them briefly to a non-harmful laser. Their results are published in a recent article in ACS NANO, a journal of the American Chemical Society.

UCSB Researchers Develop Drug Delivery System Using Nanoparticles and Lasers

Santa Barbara, CA | Posted on December 28th, 2009

"This entirely novel tool will allow biologists to investigate how genes function by providing them with temporal and spatial control over when a gene is turned on or off," explained Norbert Reich, senior author and a professor in the Department of Chemistry and Biochemistry at UCSB. "In a nutshell, what we describe is the ability to control genes in cells -- and we are working on doing this in animals -- simply by briefly exposing them to a non-harmful laser."

The scientists used cancer cells from mice, and grew them in culture. They then introduced gold nanoshells, with a peptide-lipid coating, that encapsulated "silencing ribonucleic acid" (siRNA), which was the drug that was taken up by the cells. Next, they exposed the cells to a non-harmful infrared laser.

"A major technical hurdle is how to combine multiple biochemical components into a compact nanoparticle which may be taken up by cells and exist stably until the release is desired," said Gary Braun, first author and a graduate student in UCSB's Department of Chemistry and Biochemistry. "Laser-controlled release is a convenient and powerful tool, allowing precise dosing of particular cells within a group. The use of biologically friendly tissue penetration with near-infrared light is the ideal for extending this capability into larger biological systems such as tissues and animals."

The authors demonstrated, for the first time, the delivery of a potent siRNA cargo inside mammalian cancer cells, released by exposing the internalized nanoparticles for several seconds to a pulsed near-infrared laser tuned for peak absorption with a specific spatial pattern. The technique can be expanded to deliver numerous drug molecules against diverse biological targets.

The additional collaborating authors on the paper are Alessia Pallaoro, also of UCSB's Department of Chemistry and Biochemistry; Guohui Wu and Joseph A. Zasadzinski, of UCSB's Department of Chemical Engineering; Dimitris Missirlis, of UCSB's College of Engineering, and Matthew Tirrell, former dean of UCSB's College of Engineering and now at UC Berkeley.

####

About UCSB
UCSB is one of only 62 institutions elected to membership in the prestigious Association of American Universities. And the Newsweek guide to America's best colleges has named UCSB one of the country's "hottest colleges" twice in the past five years.

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UCSB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanomedicine

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Nanobiotechnology

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project