Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Synthetic Red Blood Cells Developed

Biocompatible synthetic red blood cells (sRBCs) synthesized by the UCSB team, where the shell is composed of alternate layers of hemoglobin and BSA. (Scale bar, 5 microns)
Biocompatible synthetic red blood cells (sRBCs) synthesized by the UCSB team, where the shell is composed of alternate layers of hemoglobin and BSA. (Scale bar, 5 microns)

Abstract:
Soft and synthetic red-blood-cell-like particles carry oxygen, drugs, and more…

Synthetic Red Blood Cells Developed

Santa Barbara, CA | Posted on December 28th, 2009

Scientists at UC Santa Barbara, in collaboration with scientists at University of Michigan, have developed synthetic particles that closely mimic the characteristics and key functions of natural red blood cells, including softness, flexibility, and the ability to carry oxygen.

The primary function of natural red blood cells is to carry oxygen, and the synthetic red blood cells (sRBCs) do that very well, retaining 90% of their oxygen-binding capacity after a week. The sRBCs also, however, have been shown to deliver therapeutic drugs effectively and with controlled release, and to carry well-distributed contrast agents for enhanced resolution in diagnostic imaging.

"This ability to create flexible biomimetic carriers for therapeutic and diagnostic agents really opens up a whole new realm of possibilities in drug delivery and similar applications," noted UCSB chemical engineering professor Samir Mitragotri. "We know that we can further engineer sRBCs to carry additional therapeutic agents, both encapsulated in the sRBC and on its surface."

Mitragotri, his research group, and their collaborators from the University of Michigan succeeded in synthesizing the particles by creating a polymer doughnut-shaped template, coating the template with up to nine layers of hemoglobin and other proteins, then removing the core template. The resulting particles have the same size and flexibility, and can carry as much oxygen, as natural red blood cells. The flexibility, absent in "conventional" polymer-based biomaterials developed as carriers for therapeutic and diagnostic agents, gives the sRBCs the ability to flow through channels smaller than their resting diameter, stretching in response to flow and regaining their discoidal shape upon exiting the capillary, just as their natural counterparts do.

In addition to synthesizing particles that mimic the shape and properties of healthy RBCs, the technique described in the paper can also be used to develop particles that mimic the shape and properties of diseased cells, such as those found in sickle-cell anemia and hereditary eliptocytosis. The availability of such synthetic diseased cells is expected to lead to greater understanding of how those diseases and others affect RBCs.

The discovery is described in the current online edition of Proceedings of the National Academy of Science, and will be published in the print version of the journal in the near future. UCSB graduate student Nishti Doshi was the lead author of the paper; former post-doctoral researcher Alisar Zahr (now at Harvard Medical School's Schepens Eye Research Institute), Mitragotri, and their University of Michigan collaborators Srijanani Bhaskar and professor Joerg Lahann were co-authors.

####

About College of Engineering at UC Santa Barbara
The College of Engineering at UC Santa Barbara is a global leader in bioengineering, chemical and computational engineering, materials science, nanotechnology and physics. UCSB boasts five Nobel Laureates (four in sciences and engineering) and one winner of the prestigious international Millennium Technology Prize. Our students, professors and staff thrive in a uniquely-successful interdisciplinary and entrepreneurial culture. Our professors' research is among the most cited by their peers, evidence of the significance and relevance of their work.

For more information, please click here

Contacts:
Media Contact
Tony Rairden

805.893.4301

Copyright © College of Engineering at UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Synthetic Biology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project