Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DOE grant funds innovative nanotechnology research at UNL

Jeff Shield (left), Ralph Skomski (center) and David Sellmyer (right)
Jeff Shield (left), Ralph Skomski (center) and David Sellmyer (right)

Abstract:
Nanoscientists at the University of Nebraska-Lincoln have received a prestigious grant to develop new magnetic materials that could help reduce global warming and the nation's dependence on foreign resources.

DOE grant funds innovative nanotechnology research at UNL

Lincoln, NE | Posted on December 24th, 2009

Researchers in UNL's Nebraska Center for Materials and Nanoscience, who are nationally known experts in magnetic nanotechnology, are part of a collaboration led by the University of Delaware to develop better ways to power hybrid cars, wind turbines and computer discs, among many other applications. This team, which includes several universities, a federal laboratory and a company, recently received a three-year, nearly $4.5 million Advanced Research Projects Agency-Energy grant from the U.S. Department of Energy funded by the American Recovery and Reinvestment Act. UNL's share of the grant is $675,000.

"There's huge interest in energy research in this country now," said physics professor David Sellmyer, director of the center and the leader of this research at UNL. "Our country definitely needs to get better at creating energy for all kinds of power applications."

Many clean energy and computing technologies rely on lightweight permanent magnets and magnetic materials made from rare earth metals, such as neodymium. Despite the name, rare earth ores are common in the earth's crust. Nearly all of the world's supply of rare earth metals comes from China, which has more than half of the ore deposits. Demand for these metals is skyrocketing, and China is restricting exports. The extraction process used in China also creates environmental problems.

Sellmyer and his UNL colleagues, physicist Ralph Skomski and materials engineer Jeff Shield, are developing materials with stronger magnetic properties that do not contain rare earth metals. Stronger magnets produce more energy for powering wind turbines and hydroelectric generators. They also reduce the size and power consumption of everything from hybrid and electric cars to computer memory storage devices. Lighter-weight vehicles increase gas efficiency and reduce exhaust emissions.

To better manipulate the magnetic properties of materials, the researchers are using nanotechnology to build material at the atomic scale. The ability to precisely position every atom in a nanoparticle allows full control of the material's magnetic properties.

Collaborators at the University of Delaware, Northeastern University, Virginia Commonwealth University, the Department of Energy's Ames Laboratory and the Electron Energy Corp. also are developing new magnetic nanomaterialsa, concentrating on techniques that use smaller concentrations of rare-earth metals or composite materials.

Sellmyer said the UNL center's undertaking is the kind of high-risk, high-reward project the Department of Energy is looking for.

"The best magnets that we've got now were discovered in 1985 or so," he said. "We've made advances, but nothing that's a big quantum leap. And that's what we want: a home run rather than a single."

The Nebraska Center for Materials and Nanoscience, founded in 1988 and funded largely by grants from the National Science Foundation and the departments of Energy and Defense, brings together experts from chemistry, engineering and physics to study and create new materials and structures for a wide range of applications.

"We're one of the top magnetism groups in the country," Sellmyer said. The fact that just 1 percent of all Advanced Research Projects Agency-Energy proposals were funded demonstrates UNL's preeminence in the field.

"This is a big source of funding that should greatly improve our chances of success in a short amount of time," he said.

####

For more information, please click here

Contacts:
David Sellmyer
Professor, Physics & Astronomy
(402)472-2407

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Automotive/Transportation

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project