Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RUSNANO’S Supervisory Council Approves Financing for Project to Produce Bifacial Sensitive Monocrystalline Solar Modules

Abstract:
Realization of the project will bring Russian bifacial crystalline silicon solar modules to the world market.

RUSNANO’S Supervisory Council Approves Financing for Project to Produce Bifacial Sensitive Monocrystalline Solar Modules

Moscow | Posted on December 23rd, 2009

The new modules will have efficiency factors that surpass unifacial modules by 10% to 70%—10% when installation is done without additional construction; 70% when reflectors and tracking systems are built. These modules transform direct sunlight as well as light reflected from the natural surface or from specially built reflective elements. The module design is based on patented technology developed by Russian company Solar Wind and research and production company Kvark; the latter—a member-company of the Konti Group.

The main production line for the new modules will begin operating in 2012. Full design capacity should be reached in 2015, bringing production to around 120 MW per year. At that level, the project's annual sales are forecasted at 11.4 billion rubles. RUSNANO will invest about 2.5 billion rubles in the project.

The modules will be manufactured with silicon layers that are 20 nm to 80 nm thick, the ideal thickness for backside light sensitivity; the element itself will have transparency for infrared emission with wavelengths exceeding 1,100 nm. Production costs for these modules are competitive with those for unifacial units. To exploit the advantages of bifacial solar elements fully, the project plans to develop the technology further in the future. It will also reduce costs of production.

"What we are talking about is establishing Russia's first commercial production of bifacial solar modules. Its cost is entirely competitive with production of unifacial modules," RUSNANO Managing Director Konstantin Demetriou explained. "Today solar modules based on monocrystalline technology are the most in demand, thanks to their optimal ratio of cost and effectiveness; their share in the global market for photo energy is now around 80%. This project will diversify the corporation's portfolio in photo energy and make it possible for a competitive product with original Russian technology to enter the market."

The global market for solar modules is estimated at $19.9 billion in 2009. Specialists forecast growth to $30.4 billion in 2013 (average annual growth of 9%). If one considers market growth in terms of units, annual increases in installed capacity of solar modules are currently running at 29%; energy production will rise from 5.9 GW in 2009 to 18.5 GW in 2013.

Currently Europeans are the largest consumers of this form of energy. Therefore, the project will target sales of its products to Europe's solar power facilities in Italy, Spain, Greece, the Czech Republic, Bulgaria, Germany, and other countries. Kvark, the project's research and production partner, already holds sales contracts for a significant part of planned production capacity.

Solar Wind was founded in 1992 by Russian photovoltaic professionals with extensive experience in hi-tech and space programs. In the past, leading scientists and engineers of the company have developed unique technologies for space-based solar energy conversion systems. Some of those technologies were later used for terrestrial PV applications.

The company manufactures PV products with a proprietary process, using both standard and custom-made equipment and materials and accessories from Russian and foreign vendors.

####

About RUSNANO
The Russian Corporation of Nanotechnologies (RUSNANO) was established in 2007 by the Federal law ¹ 139-FZ to enable Government policy in the field of Nanotechnology.

To accomplish this task, RUSNANO co-invests in nanotechnology industry projects that have high commercial potential or social benefit. Early-stage investment by RUSNANO lowers the risk of its investment partners from the private sector.

For more information, please click here

Contacts:
Anna Fradkova, press-secretary of the international press office
P.: +7 495 5424444 add.1424
M.: +7 985 7299860

Copyright © RUSNANO

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project