Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale changes in collagen are a tipoff to bone health

A three-dimensional rendering from the surface of a mouse bone. In this 3.5 x 3.5 micrometer image (100 nanometer height), the rich sample topography characteristic of bone is evident. Type I collagen fibrils are seen running in a bundle from left to right near the top. A second layer of fibrils appears to be running below, almost perpendicular to this bundle, near the bottom corner.
A three-dimensional rendering from the surface of a mouse bone. In this 3.5 x 3.5 micrometer image (100 nanometer height), the rich sample topography characteristic of bone is evident. Type I collagen fibrils are seen running in a bundle from left to right near the top. A second layer of fibrils appears to be running below, almost perpendicular to this bundle, near the bottom corner.

Abstract:
Using a technique that provides detailed images of nanoscale structures, researchers at the University of Michigan and Detroit's Henry Ford Hospital have discovered changes in the collagen component of bone that directly relate to bone health.

Nanoscale changes in collagen are a tipoff to bone health

Ann Arbor, MI | Posted on December 23rd, 2009

Their findings, published online Dec. 16 in the journal Bone, could lead to new methods of diagnosing osteoporosis and other diseases affecting collagen-containing tissues.

Bone is a composite material made up of a flexible collagen matrix impregnated with and surrounded by a stiffer, stronger mineral component. Though much is known about the importance of bone health to overall health, there's a critical lack of knowledge about the sub-microscopic structure of bone and how collagen and mineral—and the interactions between them—contribute to properties of healthy and diseased bone.

"Our initial question was, could we discover more about the nanoscale structure of the collagen in bone, using the technique of atomic force microscopy," said Mark Banaszak Holl, a U-M professor with joint appointments in chemistry and macromolecular science and engineering.

The atomic force microscope, one of the most valuable tools for imaging, measuring and manipulating matter at the nanoscale level, works something like a phonograph with a motion detector attached to its needle. As the tip systematically moves across a bumpy surface, the motion detector records its every movement. The result is a three-dimensional image of the surface's contours.

Using such an instrument, the researchers were able to see and measure key features of collagen fibrils in mouse bone. Each collagen fibril is made up of many individual collagen molecules packed together in a staggered array that resembles a railroad track.

"For each fibril, we measured the mean spacing of the 'railroad track' cross hatches," said post doctoral associate Joseph Wallace, the paper's lead author. Wallace, Banaszak Holl and coworkers found that not all fibrils had the same mean spacing, a finding that ran counter to conventional wisdom in the field.

"As opposed to a single value, our data indicate that normal bone contains a distribution of collagen fibril spacings," Wallace said.

Next, the team wanted to know if the distribution of fibril spacings differed in bone from healthy and diseased individuals. To address that question, they collaborated with Clifford Les of Henry Ford Hospital, who has been studying how bone changes when estrogen wanes, as it does in menopause. To model the age-related estrogen depletion that occurs in humans, Les uses sheep that have had their ovaries removed. The sheep exhibit some of the same symptoms as menopausal women, and they undergo some bone remodeling, but they don't develop osteoporosis.

When the researchers compared bone from normal and ovariectomized sheep, they found striking differences in fibril spacing distributions, suggesting that estrogen depletion has a significant effect on the spacing.

"This ability to measure fibril spacing and to distinguish between normal and diseased bone not only gives us a powerful method to study the mechanism of disease at the nanoscale, but it also has important implications to the future diagnosis of disease in bone and perhaps other collagenous tissues," said Banaszak Holl. "Collagen is the most common protein in the mammalian body. It's in bones, teeth, tendons, skin, arteries. We basically don't work well when it's not working well, so there are many diseases related to problems with collagen. We're very excited about developing this method as a diagnostic for all kinds of diseases of structural collagen."

The technique could be a powerful complement to the current gold standard for diagnosing osteoporosis: measuring bone mineral density (BMD) with dual energy X-ray absorptiometry (DEXA). Although widely used, DEXA isn't ideal, because people with normal BMD can still get fractures, and abnormalities often don't show up until after a fracture has occurred. Changes in collagen, on the other hand, may be apparent earlier in the disease's progression.

To further explore the method's potential, the researchers plan to use it to study collagen fibril spacing in human patients with and without osteoporosis. U-M has filed for patent protection and is seeking a commercialization partner to help bring the technology to market.

"This project is an example of what happens if you put the right group of people together on a problem," said Banaszak Holl. Wallace, a biomedical engineer, had experience working with bone in previous research; Banaszak Holl's lab group brought expertise in surface analysis; Les contributed knowledge about bone biology and understanding of the sheep model; and coauthors Bradford Orr, director of the Applied Physics Program, and Blake Erickson, a biophysics graduate student, are skilled in data analysis.

"All these different pieces were necessary to solve the problem," Banaszak Holl said.

The research was funded by the National Institutes of Health (National Institute of Dental and Craniofacial Research and National Institute of Arthritis and Musculoskeletal and Skin Diseases).

####

About University of Michigan
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.

For more information, please click here

Contacts:
Nancy Ross-Flanigan
(734) 647-1853

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Tools

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE