Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New insight in nerve cell communication

Right: Brain-lipid vesicles. Smaller "dots" indicate smaller vesicles. Left: BAR domain protein. The intensity of the dot indicates the amount of BAR bound to the vesicle. The smaller the vesicle, the more curved membrane, and the more binding of BAR.

Credit: Dimitrios Stamou
Right: Brain-lipid vesicles. Smaller "dots" indicate smaller vesicles. Left: BAR domain protein. The intensity of the dot indicates the amount of BAR bound to the vesicle. The smaller the vesicle, the more curved membrane, and the more binding of BAR. Credit: Dimitrios Stamou

Abstract:
Communication between nerve cells is vital for our bodies to function. Part of this communication happens through vesicles containing signalling molecules called neurotransmitters. The vesicle fuses with the nerve cell membrane; the neurotransmitters are released and quickly recorded by the next nerve cell. It is crucial that new vesicles constantly are produced for the nerve cell communication continuously to take place. If parts of this communication do not work, it leads to nerve pain like phantom pain following amputation.

New insight in nerve cell communication

Copenhagen | Posted on December 22nd, 2009

New discoveries on a nanoscale

- In patients with nerve pain, part of the pathological picture is a defect in a protein domain we call BAR. We have studied how BAR binds to small membrane vesicles of different size. We expect that the new knowledge can be used to combat nerve pain in the future, explains Associate Professor Dimitrios Stamou, Bio-Nanotechnology Laboratory, Nano-Science Center and the Department of Neuroscience and Pharmacology. Dimitrios Stamou has led the work.

- We have used nanotechnology techniques, which give us the unique opportunity to study the binding of proteins to individual vesicles. Earlier studies have been performed in solutions where you measure a large number of vesicles and proteins at a time. This gives an average value of binding and "masks out" a large number of important information that we can retrieve by measurements on single vesicles, says Dimitrios Stamou.

Error in communication

More and more studies - this study included, show that the curvature of the membrane is absolutely central to the binding of proteins to cell membranes - the greater the curvature, the greater the binding. This also applies to nerve cells in the brain. It therefore provides an important insight for the overall understanding of how nerve cells communicate with each other and for treating diseases where the communication has failed.

- To our great surprise we find that BAR binds to the membrane vesicles via small cracks in the vesicle membrane. We had expected that BAR bound to the small round membrane vesicles both because of its banana shaped structure, which fits with the shape of the vesicle, and by means of an attraction between "the banana's" positive surface and vesicle's negative surface. But instead, it is the hydrophobic part of BAR that is involved in binding, explains Dimitrios Stamou.

####

About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark.

For more information, please click here

Contacts:
Dimitrios Stamou

454-116-0468

Communication Officer
Gitte Frandsen

Tel.: +45 28 75 04 58

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

DNA 'cage' could improve nanopore technology February 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE