Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Nanopore Technique Facilitates Faster, Cheaper Genome Analyses

Schematic of a solid state nanopore used for genome analyses (not to scale). The electrostatic potential near an approximately five nanometer-wide, solid-state nanopore attracts negatively-charged, double-stranded DNA molecules into the pore, which electronically detects the molecules as they traverse the pore. (Photo courtesy of Nature Nanotechnology.)
Schematic of a solid state nanopore used for genome analyses (not to scale). The electrostatic potential near an approximately five nanometer-wide, solid-state nanopore attracts negatively-charged, double-stranded DNA molecules into the pore, which electronically detects the molecules as they traverse the pore. (Photo courtesy of Nature Nanotechnology.)

Abstract:
Ultra-fast, low-cost genomic sequencing and profiling may some day accelerate the pace of biological discovery and enable clinicians to quickly and precisely diagnose patients' susceptibility to disease and tolerance of selected drugs. But this scenario may not be realized until engineers find a way to considerably increase the sensitivity of sensors used to detect the DNA molecules that define the human genome.

New Nanopore Technique Facilitates Faster, Cheaper Genome Analyses

Boston, MA | Posted on December 21st, 2009

It's a feat that could be achieved by reducing the number of target DNA molecule copies needed to obtain an accurate read. And that presents a formidable challenge: to produce sufficient copies to decipher the genome using current technology, most scientists still rely on time-consuming, expensive, and error-prone DNA replication tools such as the polymerase chain reaction (PCR).

Now researchers have devised a method that advances the prospects for efficiently analyzing DNA samples without amplification. In a study published in the Dec. 20 online edition of Nature Nanotechnology, Associate Professor Amit Meller (BME, Physics), BME postdoctoral fellow Meni Wanunu, BU physics student Will Morrison and collaborators at New York University and Bar-Ilan University demonstrated a method to tune solid-state nanopores tiny, nearly cylindrical, silicon nitride sensors that electronically detect DNA molecules as they pass through the pore to require far fewer DNA molecules than ever before.

"This study shows that using our method, we can detect a much smaller amount of DNA than previously published," said Meller. "When people will start to implement genome sequencing or profiling using nanopores, they could use our nanopore capture approach to greatly reduce the number of copies used in those measurements."

Nanopore capture consists of two distinct steps: the arrival of a sample molecule to the pore mouth, and the threading of the end of that molecule into the pore. To significantly increase the rate at which nanopores capture incoming, two nanometer-wide DNA molecules, Meller and his colleagues used salt gradients to alter the electric field in the pore's vicinity. This achieved a funneling effect that directed charged DNA molecules toward the mouth of the pore and boosted the molecules' arrival and threading rates.

By upping the capture rate by a few orders of magnitude and decreasing the volume of the sample receiving chamber, the researchers reduced the number of DNA molecule copies required for nanopore-based detection by a factor of 10,000 from about one billion sample molecules to 100,000. They also demonstrated that longer DNA molecules (containing tens of thousands of nucleotide base pairs) increased the capture rate even further.

"PCR and other DNA replication technologies limit DNA molecule length," said Meller. "Because our method avoids amplification, it not only reduces the cost, time and error rate of DNA replication techniques, but also enables the analysis of very long strands of DNA."

Funded by the National Institutes of Health and the National Science Foundation, the research team set out to achieve a better understanding of the physical forces that govern the DNA capture process. They arrived at their findings by using high-end transmission electron microscopes (TEM) to fabricate hundreds of nanopores with atomic-scale precision, and testing differently configured salt gradients near the pores.

"We had to perform extensive studies with these nearly atomic-scale pores in order to reveal how the electrostatic potential, which extends at least hundreds of nanometers away from the pore, focuses DNA into and through the pore," said Meller.

To conduct further investigations of unamplified genomes, Meller is now exploring other technologies, including optical detection and force measurements, for reading single DNA molecules as they pass through nanopores.

####

About Boston University
Boston University is one of the leading private research and teaching institutions in the world today, with two primary campuses in the heart of Boston and programs around the world.

For more information, please click here

Copyright © Boston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Tools

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic