Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular Freight

A valuable cargo: Polysaccharides (-1,3-glucans) act as a host compound to various nanomaterial cargoes such as single-walled carbon nanotubes. The cargo packed in the host container is transported on the rail (F-actin) by wheels and a molecular motor (myosin) attached to the container (see picture). This artificial system is inspired by a container transportation system based on the motion of vesicles in biological cells. Copyright  Wiley InterScience
A valuable cargo: Polysaccharides (-1,3-glucans) act as a host compound to various nanomaterial cargoes such as single-walled carbon nanotubes. The cargo packed in the host container is transported on the rail (F-actin) by wheels and a molecular motor (myosin) attached to the container (see picture). This artificial system is inspired by a container transportation system based on the motion of vesicles in biological cells. Copyright Wiley InterScience

Abstract:
Synthetic nanoscale transport system modeled on nature

Molecular Freight

Japan | Posted on December 21st, 2009

Just like our roads, there is a lot of traffic within the cells in our bodies, because cell components, messenger molecules, and enzymes must also be brought to the right places in the cell. One of these transportation systems functions like a kind of railway: a system of molecular tracks is used to transport vesicles and their contents to their target destinations. In imitation of this natural "cargo transport", Japanese researchers have developed a synthetic molecular transport system. The scientists, led by Youichi Tsuchiya and Seiji Shinkai, report in the journal Angewandte Chemie that this could form the basis for the development of a method for transporting therapeutic genes into cell nuclei.

The cellular rail system uses actin filaments for tracks. Actin filaments are strong strands of protein that form a network inside a cell. Acting as both motor proteins and wheels are myosin molecules, which move along the tracks. The vesicle being transported hangs on to the tail end of the myosin. The myosin head consists of ATPase, an enzyme that degrades ATP. ATP is cellular fuel; its decomposition releases energy. In the process of splitting the ATP, the angle of the myosin head attached to the actin filament changes, which causes the myosin to move along the filament like a wheel on a track, bringing its cargo along for the ride.

The researchers also incorporated actin, myosin, and ATP as components for their synthetic transport system. For their container, they chose schizophyllan, a triple-stranded helical polysaccharide from fungi. In certain solvents the helix unravels; when placed back in water, the polysaccharide twists back up into a helix. In this process, it can wrap around large molecules or nanoparticles, packaging them up. In their study, the researchers loaded these molecular containers with carbon nanotubes. They used cobalt ions to dock on several myosin units, and these wheels did indeed move the tiny freight train along the actin track. With an average speed of about 95 nm/s, the freight cars crossed the amazing distance of about 5 m.

Transport along cellular actin tracks always moves in only one direction. The filaments are bound to each other at junctions, creating a transportation network that also allows for changes in direction within the cell. The synthetic molecular freight trains can also change from one filament to another at junctions in the network. Because the direction of the actin track leads into the cell nucleus, the artificial transport system may be useful in gene therapy, because it could wrap up the therapeutic genes and carry them into the cellular nucleus.


Author: Seiji Shinkai, ISIT, Fukuoka (Japan),

Title: A Polysaccharide-Based Container Transportation System Powered by Molecular Motors

Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200904909

####

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanobiotechnology

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic