Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Caltech Scientists Film Photons with Electrons

The diffraction obtained for silicon with 4D electron microscopy. From the patterns the structure can be determined on the nanoscale. [Credit: AAAS/Science/Zewail/Caltech]
The diffraction obtained for silicon with 4D electron microscopy. From the patterns the structure can be determined on the nanoscale. [Credit: AAAS/Science/Zewail/Caltech]

Abstract:
4D electron microscopy makes it possible to image photons of nanoscale structures and visualize their architecture.

Caltech Scientists Film Photons with Electrons

Pasadena, CA | Posted on December 18th, 2009

Techniques recently invented by researchers at the California Institute of Technology (Caltech)—which allow the real-time, real-space visualization of fleeting changes in the structure of nanoscale matter—have been used to image the evanescent electrical fields produced by the interaction of electrons and photons, and to track changes in atomic-scale structures.

Papers describing the novel technologies appear in the December 17 issue of Nature and the October 30 issue of Science.

Four-dimensional (4D) microscopy-the methodology upon which the new techniques were based-was developed at Caltech's Physical Biology Center for Ultrafast Science and Technology. The center is directed by Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics at Caltech, and winner of the 1999 Nobel Prize in Chemistry.

Zewail was awarded the Nobel Prize for pioneering the science of femtochemistry, the use of ultrashort laser flashes to observe fundamental chemical reactions occurring at the timescale of the femtosecond (one-millionth of a billionth of a second). The work "captured atoms and molecules in motion," Zewail says, but while snapshots of such molecules provide the "time dimension" of chemical reactions, they don't give the dimensions of space of those reactions-that is, their structure or architecture.

Zewail and his colleagues were able to visualize the missing architecture through 4D microscopy, which employs single electrons to introduce the dimension of time into traditional high-resolution electron microscopy, thus providing a way to see the changing structure of complex systems at the atomic scale. (See media.caltech.edu/press_releases/13207.)

In the research detailed in the Science paper, Zewail and postdoctoral scholar Aycan Yurtsever were able to focus an electron beam onto a specific nanoscale-sized site in a specimen, making it possible to observe structures within that localized area at the atomic level.

In electron diffraction, an object is illuminated with a beam of electrons. The electrons bounce off the atoms in the object, then scatter and strike a detector. The patterns produced on the detector provide information about the arrangement of the atoms in the material. However, if the atoms are in motion, the patterns will be blurred, obscuring details about small-scale variations in the material.

The new technique devised by Zewail and Yurtsever addresses the blurring problem by using electron pulses instead of a steady electron beam. The sample under study-in the case of the Science paper, a wafer of crystalline silicon-is first heated by being struck with a short pulse of laser light. The sample is then hit with a femtosecond pulse of electrons, which bounce off the atoms, producing a diffraction pattern on a detector.

Since the electron pulses are so incredibly brief, the heated atoms don't have time to move much; this shorter "exposure time" produces a sharp image. By adjusting the delay between when the sample is heated and when the image is taken, the scientists can build up a library of still images that can be strung together into a movie.

"Essentially all of the specimens we deal with are heterogeneous," Zewail explains, with varying compositions over very small areas. "This technique provides the means for examining local sites in materials and biological structures, with a spatial resolution of a nanometer or less, and time resolution of femtoseconds."

The new diffraction method allows the structures of materials to be mapped out at an atomic scale. With the second technique-introduced in the Nature paper, which was coauthored by postdoctoral scholars Brett Barwick and David Flannigan-the light produced by such nanostructures can be imaged and mapped.

The concept behind this technique involves the interaction between electrons and photons. Photons generate an evanescent field in nanostructures, and electrons can gain energy from such fields, which makes them visible in the 4D microscope.

In what is known as the photon-induced near-field electron microscopy (PINEM) effect, certain materials-after being hit with laser pulses-continue to "glow" for a short but measurable amount of time (on the order of tens to hundreds of femtoseconds).

In their experiment, the researchers illuminated carbon nanotubes and silver nanowires with short pulses of laser light as electrons were being shot past. The evanescent field persisted for femtoseconds, and the electrons picked up energy during this time in discrete amounts (or quanta) corresponding to the wavelength of the laser light. The energy of an electron at 200 kilo-electron volts (keV) increased by 2.4 electron volts (eV), or by 4.8 eV, or by 7.2 eV, etc.; alternatively, an electron might not change in energy at all. The number of electrons showing a change is more striking if the timing is just right, i.e., if the electrons are passing the material when the field is at its strongest.

The power of this technique is that it provides a way to visualize the evanescent field when the electrons that have gained energy are selectively identified, and to image the nanostructures themselves when electrons that have not gained energy are selected.

"As noted by the reviewers of this paper, this technique of visualization opens new vistas of imaging with the potential to impact fields such as plasmonics, photonics, and related disciplines," Zewail says. "What is interesting from a fundamental physics point of view is that we are able to image photons using electrons. Traditionally, because of the mismatch between the energy and momentum of electrons and photons, we did not expect the strength of the PINEM effect, or the ability to visualize it in space and time."

The work in the Nature paper, "Photon-Induced Near-Field Electron Microscopy," and the Science paper, "4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy," was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Gordon and Betty Moore Foundation at the Center for Physical Biology at Caltech.

####

About Caltech
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

For more information, please click here

Contacts:
Kathy Svitil

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Announcements

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Tools

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Contributing to the spirit of the IYCR 2014 September 24th, 2014

BSA Distinguished Lecture Tuesday, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' September 23rd, 2014

Photonics/Optics/Lasers

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE