Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Caltech Scientists Film Photons with Electrons

The diffraction obtained for silicon with 4D electron microscopy. From the patterns the structure can be determined on the nanoscale. [Credit: AAAS/Science/Zewail/Caltech]
The diffraction obtained for silicon with 4D electron microscopy. From the patterns the structure can be determined on the nanoscale. [Credit: AAAS/Science/Zewail/Caltech]

Abstract:
4D electron microscopy makes it possible to image photons of nanoscale structures and visualize their architecture.

Caltech Scientists Film Photons with Electrons

Pasadena, CA | Posted on December 18th, 2009

Techniques recently invented by researchers at the California Institute of Technology (Caltech)—which allow the real-time, real-space visualization of fleeting changes in the structure of nanoscale matter—have been used to image the evanescent electrical fields produced by the interaction of electrons and photons, and to track changes in atomic-scale structures.

Papers describing the novel technologies appear in the December 17 issue of Nature and the October 30 issue of Science.

Four-dimensional (4D) microscopy-the methodology upon which the new techniques were based-was developed at Caltech's Physical Biology Center for Ultrafast Science and Technology. The center is directed by Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics at Caltech, and winner of the 1999 Nobel Prize in Chemistry.

Zewail was awarded the Nobel Prize for pioneering the science of femtochemistry, the use of ultrashort laser flashes to observe fundamental chemical reactions occurring at the timescale of the femtosecond (one-millionth of a billionth of a second). The work "captured atoms and molecules in motion," Zewail says, but while snapshots of such molecules provide the "time dimension" of chemical reactions, they don't give the dimensions of space of those reactions-that is, their structure or architecture.

Zewail and his colleagues were able to visualize the missing architecture through 4D microscopy, which employs single electrons to introduce the dimension of time into traditional high-resolution electron microscopy, thus providing a way to see the changing structure of complex systems at the atomic scale. (See media.caltech.edu/press_releases/13207.)

In the research detailed in the Science paper, Zewail and postdoctoral scholar Aycan Yurtsever were able to focus an electron beam onto a specific nanoscale-sized site in a specimen, making it possible to observe structures within that localized area at the atomic level.

In electron diffraction, an object is illuminated with a beam of electrons. The electrons bounce off the atoms in the object, then scatter and strike a detector. The patterns produced on the detector provide information about the arrangement of the atoms in the material. However, if the atoms are in motion, the patterns will be blurred, obscuring details about small-scale variations in the material.

The new technique devised by Zewail and Yurtsever addresses the blurring problem by using electron pulses instead of a steady electron beam. The sample under study-in the case of the Science paper, a wafer of crystalline silicon-is first heated by being struck with a short pulse of laser light. The sample is then hit with a femtosecond pulse of electrons, which bounce off the atoms, producing a diffraction pattern on a detector.

Since the electron pulses are so incredibly brief, the heated atoms don't have time to move much; this shorter "exposure time" produces a sharp image. By adjusting the delay between when the sample is heated and when the image is taken, the scientists can build up a library of still images that can be strung together into a movie.

"Essentially all of the specimens we deal with are heterogeneous," Zewail explains, with varying compositions over very small areas. "This technique provides the means for examining local sites in materials and biological structures, with a spatial resolution of a nanometer or less, and time resolution of femtoseconds."

The new diffraction method allows the structures of materials to be mapped out at an atomic scale. With the second technique-introduced in the Nature paper, which was coauthored by postdoctoral scholars Brett Barwick and David Flannigan-the light produced by such nanostructures can be imaged and mapped.

The concept behind this technique involves the interaction between electrons and photons. Photons generate an evanescent field in nanostructures, and electrons can gain energy from such fields, which makes them visible in the 4D microscope.

In what is known as the photon-induced near-field electron microscopy (PINEM) effect, certain materials-after being hit with laser pulses-continue to "glow" for a short but measurable amount of time (on the order of tens to hundreds of femtoseconds).

In their experiment, the researchers illuminated carbon nanotubes and silver nanowires with short pulses of laser light as electrons were being shot past. The evanescent field persisted for femtoseconds, and the electrons picked up energy during this time in discrete amounts (or quanta) corresponding to the wavelength of the laser light. The energy of an electron at 200 kilo-electron volts (keV) increased by 2.4 electron volts (eV), or by 4.8 eV, or by 7.2 eV, etc.; alternatively, an electron might not change in energy at all. The number of electrons showing a change is more striking if the timing is just right, i.e., if the electrons are passing the material when the field is at its strongest.

The power of this technique is that it provides a way to visualize the evanescent field when the electrons that have gained energy are selectively identified, and to image the nanostructures themselves when electrons that have not gained energy are selected.

"As noted by the reviewers of this paper, this technique of visualization opens new vistas of imaging with the potential to impact fields such as plasmonics, photonics, and related disciplines," Zewail says. "What is interesting from a fundamental physics point of view is that we are able to image photons using electrons. Traditionally, because of the mismatch between the energy and momentum of electrons and photons, we did not expect the strength of the PINEM effect, or the ability to visualize it in space and time."

The work in the Nature paper, "Photon-Induced Near-Field Electron Microscopy," and the Science paper, "4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy," was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Gordon and Betty Moore Foundation at the Center for Physical Biology at Caltech.

####

About Caltech
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

For more information, please click here

Contacts:
Kathy Svitil

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Photonics/Optics/Lasers

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE