Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Abstract:
The National Institute of Standards and Technology (NIST) has awarded a $10.1 million, five-year grant to an interdisciplinary team of researchers led by University of Wisconsin-Madison mechanical engineering professor Xiaochun Li.

Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Madison, WI | Posted on December 16th, 2009

The researchers are working to implement nanotechnology into the traditional casting industry, which could yield high-quality aluminum and magnesium nanocomposites in the next five years.

The grant is from the NIST Technology Innovation Program, which has announced support for 20 innovative projects in new technologies that address critical national needs.

The UW-Madison project, titled "Transformational Casting Technology for Fabrication of Ultra-High Performance Lightweight Aluminum and Magnesium Nanocomposites," will yield a new casting technology for commercial-scale production of aluminum and magnesium matrix nanocomposites.

Writing in support of the project, Wisconsin Gov. Jim Doyle noted the potential benefit of Li's work for manufacturers.

"Wisconsin is one of the most important manufacturing states in the United States and is an historical leader in the metal casting industry for a diverse range of applications," Doyle writes. "Nanotechnology, a field where UW-Madison is a recognized leader, provides opportunities to develop new materials and processes that will help our metal-casting industry remain competitive in existing markets and allow us to develop new global markets where the strength and weight advantages of nanocomposites will be advantageous."

Manufacturers are increasingly turning to lightweight aluminum and magnesium alloys, which have better performance and energy efficiency than iron and steel. The lighter alloys can be reinforced with nanoparticles, usually ceramic, which significantly enhances the material properties. However, because nanoparticles are difficult to disperse evenly in materials, their use in the casting industry is not widespread.

It is especially challenging for researchers to disperse and stabilize nanoparticles in molten metals (or melts) because most melts have a large surface-to-volume ratio and are unable to maintain contact with the solid nanoparticle surfaces (a quality known as poor wettability). The result is the nanoparticles clump together.

In the last six years, Li's lab has developed an experimental technique that uses high-intensity ultrasonic waves to disperse the nanoparticles through the melts. The waves cause the formation, growth and collapse of microbubbles within the material. The collapse of the microbubbles produces microscopic "hot spots" that can reach temperatures above 9,000 degrees Fahrenheit, causing micro-shock waves. Li and his team have shown that the violent micro-shock waves effectively disperse the nanoparticles evenly through the molten metals.

"If successful, the commercial-scale production of these metal nanocomposites will enable transformative changes in multiple industries and directly address the critical national needs of reducing oil dependency, lowering greenhouse gas emissions, and maintaining U.S. leadership in manufacturing," says Li.

The NIST grant will allow Li and his collaborators to continue building a fundamental knowledge base and scale up the process. Li anticipates widespread use of his technique will produce high-quality aluminum and magnesium nanocomposites in the next five years. He also predicts that a new metal-metrix nanocomposites industry will rise along with the use of nanotechnology in casting.

Li's collaborators at UW-Madison include Tim Osswald, Kuo K. and Cindy F. Wang Professor of Mechanical Engineering, and Shiyu Zhou, associate professor of industrial and systems engineering. The team also is partnering with Wisconsin-based Eck Industries Inc., the Oshkosh Corp., and Houston-based Nanostructured & Amorphous Materials Inc., as well as the Wisconsin Alumni Research Foundation. Li and his collaborators plan to establish an industrial consortium to disseminate and implement their research results.

####

For more information, please click here

Contacts:
Sandra Knisely

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Environment

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Industrial

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE