Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Abstract:
The National Institute of Standards and Technology (NIST) has awarded a $10.1 million, five-year grant to an interdisciplinary team of researchers led by University of Wisconsin-Madison mechanical engineering professor Xiaochun Li.

Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Madison, WI | Posted on December 16th, 2009

The researchers are working to implement nanotechnology into the traditional casting industry, which could yield high-quality aluminum and magnesium nanocomposites in the next five years.

The grant is from the NIST Technology Innovation Program, which has announced support for 20 innovative projects in new technologies that address critical national needs.

The UW-Madison project, titled "Transformational Casting Technology for Fabrication of Ultra-High Performance Lightweight Aluminum and Magnesium Nanocomposites," will yield a new casting technology for commercial-scale production of aluminum and magnesium matrix nanocomposites.

Writing in support of the project, Wisconsin Gov. Jim Doyle noted the potential benefit of Li's work for manufacturers.

"Wisconsin is one of the most important manufacturing states in the United States and is an historical leader in the metal casting industry for a diverse range of applications," Doyle writes. "Nanotechnology, a field where UW-Madison is a recognized leader, provides opportunities to develop new materials and processes that will help our metal-casting industry remain competitive in existing markets and allow us to develop new global markets where the strength and weight advantages of nanocomposites will be advantageous."

Manufacturers are increasingly turning to lightweight aluminum and magnesium alloys, which have better performance and energy efficiency than iron and steel. The lighter alloys can be reinforced with nanoparticles, usually ceramic, which significantly enhances the material properties. However, because nanoparticles are difficult to disperse evenly in materials, their use in the casting industry is not widespread.

It is especially challenging for researchers to disperse and stabilize nanoparticles in molten metals (or melts) because most melts have a large surface-to-volume ratio and are unable to maintain contact with the solid nanoparticle surfaces (a quality known as poor wettability). The result is the nanoparticles clump together.

In the last six years, Li's lab has developed an experimental technique that uses high-intensity ultrasonic waves to disperse the nanoparticles through the melts. The waves cause the formation, growth and collapse of microbubbles within the material. The collapse of the microbubbles produces microscopic "hot spots" that can reach temperatures above 9,000 degrees Fahrenheit, causing micro-shock waves. Li and his team have shown that the violent micro-shock waves effectively disperse the nanoparticles evenly through the molten metals.

"If successful, the commercial-scale production of these metal nanocomposites will enable transformative changes in multiple industries and directly address the critical national needs of reducing oil dependency, lowering greenhouse gas emissions, and maintaining U.S. leadership in manufacturing," says Li.

The NIST grant will allow Li and his collaborators to continue building a fundamental knowledge base and scale up the process. Li anticipates widespread use of his technique will produce high-quality aluminum and magnesium nanocomposites in the next five years. He also predicts that a new metal-metrix nanocomposites industry will rise along with the use of nanotechnology in casting.

Li's collaborators at UW-Madison include Tim Osswald, Kuo K. and Cindy F. Wang Professor of Mechanical Engineering, and Shiyu Zhou, associate professor of industrial and systems engineering. The team also is partnering with Wisconsin-based Eck Industries Inc., the Oshkosh Corp., and Houston-based Nanostructured & Amorphous Materials Inc., as well as the Wisconsin Alumni Research Foundation. Li and his collaborators plan to establish an industrial consortium to disseminate and implement their research results.

####

For more information, please click here

Contacts:
Sandra Knisely

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Materials/Metamaterials

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Graphenea opens US branch October 16th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Environment

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Industrial

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Bilbao (Spain) to welcome 1500 delegates at international event: ImagineNano 2015 and Graphene 2015 under the same roof October 2nd, 2014

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE