Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Abstract:
The National Institute of Standards and Technology (NIST) has awarded a $10.1 million, five-year grant to an interdisciplinary team of researchers led by University of Wisconsin-Madison mechanical engineering professor Xiaochun Li.

Wisconsin cast-metals manufacturing benefits from $10 million federal grant

Madison, WI | Posted on December 16th, 2009

The researchers are working to implement nanotechnology into the traditional casting industry, which could yield high-quality aluminum and magnesium nanocomposites in the next five years.

The grant is from the NIST Technology Innovation Program, which has announced support for 20 innovative projects in new technologies that address critical national needs.

The UW-Madison project, titled "Transformational Casting Technology for Fabrication of Ultra-High Performance Lightweight Aluminum and Magnesium Nanocomposites," will yield a new casting technology for commercial-scale production of aluminum and magnesium matrix nanocomposites.

Writing in support of the project, Wisconsin Gov. Jim Doyle noted the potential benefit of Li's work for manufacturers.

"Wisconsin is one of the most important manufacturing states in the United States and is an historical leader in the metal casting industry for a diverse range of applications," Doyle writes. "Nanotechnology, a field where UW-Madison is a recognized leader, provides opportunities to develop new materials and processes that will help our metal-casting industry remain competitive in existing markets and allow us to develop new global markets where the strength and weight advantages of nanocomposites will be advantageous."

Manufacturers are increasingly turning to lightweight aluminum and magnesium alloys, which have better performance and energy efficiency than iron and steel. The lighter alloys can be reinforced with nanoparticles, usually ceramic, which significantly enhances the material properties. However, because nanoparticles are difficult to disperse evenly in materials, their use in the casting industry is not widespread.

It is especially challenging for researchers to disperse and stabilize nanoparticles in molten metals (or melts) because most melts have a large surface-to-volume ratio and are unable to maintain contact with the solid nanoparticle surfaces (a quality known as poor wettability). The result is the nanoparticles clump together.

In the last six years, Li's lab has developed an experimental technique that uses high-intensity ultrasonic waves to disperse the nanoparticles through the melts. The waves cause the formation, growth and collapse of microbubbles within the material. The collapse of the microbubbles produces microscopic "hot spots" that can reach temperatures above 9,000 degrees Fahrenheit, causing micro-shock waves. Li and his team have shown that the violent micro-shock waves effectively disperse the nanoparticles evenly through the molten metals.

"If successful, the commercial-scale production of these metal nanocomposites will enable transformative changes in multiple industries and directly address the critical national needs of reducing oil dependency, lowering greenhouse gas emissions, and maintaining U.S. leadership in manufacturing," says Li.

The NIST grant will allow Li and his collaborators to continue building a fundamental knowledge base and scale up the process. Li anticipates widespread use of his technique will produce high-quality aluminum and magnesium nanocomposites in the next five years. He also predicts that a new metal-metrix nanocomposites industry will rise along with the use of nanotechnology in casting.

Li's collaborators at UW-Madison include Tim Osswald, Kuo K. and Cindy F. Wang Professor of Mechanical Engineering, and Shiyu Zhou, associate professor of industrial and systems engineering. The team also is partnering with Wisconsin-based Eck Industries Inc., the Oshkosh Corp., and Houston-based Nanostructured & Amorphous Materials Inc., as well as the Wisconsin Alumni Research Foundation. Li and his collaborators plan to establish an industrial consortium to disseminate and implement their research results.

####

For more information, please click here

Contacts:
Sandra Knisely

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Jobs

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Participate in the development of Malaysias National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Environment

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Industrial

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project