Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New structure could produce efficient semiconductor laser sources

Abstract:
University of Wisconsin-Madison researchers have achieved a nanoscale laser structure they anticipate will produce semiconductor lasers in the next two years that are more than twice as efficient as current continuous-wave lasers emitting in the mid-infrared.

New structure could produce efficient semiconductor laser sources

Madison, WI | Posted on December 14th, 2009

"The novel structure will produce lasers with more power and that are more efficient, reliable and stable," says Dan Botez, Electrical and Computer Engineering Philip Dunham Reed Professor. He created the new structure with electrical and computer engineering professor Luke Mawst.

These next-generation lasers could benefit a wide range of industries, as they could be used in biomedical devices, environmental monitoring devices, missile avoidance systems and even food packaging processes. This wide range of applications is possible because the researchers have all but eliminated the temperature sensitivity for lasers operating in continuous-wave mode, meaning the laser emits uninterrupted, coherent light.

"For example, current mid-infrared laser technologies for detecting explosives can detect from only approximately 30 feet away," Botez says. "With these lasers, devices could detect explosives at more like 300 feet away."

Also important is that the researchers created the new laser structure via a scalable industrial process. Called metalorganic chemical vapor deposition (MOCVD), the process involves exposing a substrate to high heat and chemicals, causing the formation of layers on the substrate in an atomic-lattice configuration. Unlike previous crystal growth techniques, MOCVD allows manufacturers in addition to laboratory scientists to fabricate laser structures with varying compositions.

Varying the layers' composition is important in building a structure that prevents electrons from escaping the laser structure, a process called carrier leakage. "By suppressing carrier leakage, there is about 2.5 times less heating in the device while the laser is in continuous-wave operation," says Botez. "This is a dramatic improvement that means the device will be almost temperature insensitive."

The result will be continuous-wave lasers that Botez anticipates will achieve at least 20 percent wall-plug efficiency, which is the electrical-to-optical power efficiency of a laser system. Twenty percent efficiency would be roughly double the current world record for practical continuous-wave quantum cascade lasers.

Botez and Mawst are actively interested in commercializing the technology, which is covered by two issued and one pending U.S. patents.

For a more detailed story about the structure Botez and Mawst have created, visit www.engr.wisc.edu/news/headlines/2009/Dec07.html.

####

For more information, please click here

Contacts:
Sandra Knisely
608-265-8592

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Military

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Food/Agriculture/Supplements

Protecting olive oil from counterfeiters April 24th, 2014

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Environment

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Fabricating Nanostructures with Silk Could Make Clean Rooms Green Rooms March 31st, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

Photonics/Optics/Lasers

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE