Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New structure could produce efficient semiconductor laser sources

Abstract:
University of Wisconsin-Madison researchers have achieved a nanoscale laser structure they anticipate will produce semiconductor lasers in the next two years that are more than twice as efficient as current continuous-wave lasers emitting in the mid-infrared.

New structure could produce efficient semiconductor laser sources

Madison, WI | Posted on December 14th, 2009

"The novel structure will produce lasers with more power and that are more efficient, reliable and stable," says Dan Botez, Electrical and Computer Engineering Philip Dunham Reed Professor. He created the new structure with electrical and computer engineering professor Luke Mawst.

These next-generation lasers could benefit a wide range of industries, as they could be used in biomedical devices, environmental monitoring devices, missile avoidance systems and even food packaging processes. This wide range of applications is possible because the researchers have all but eliminated the temperature sensitivity for lasers operating in continuous-wave mode, meaning the laser emits uninterrupted, coherent light.

"For example, current mid-infrared laser technologies for detecting explosives can detect from only approximately 30 feet away," Botez says. "With these lasers, devices could detect explosives at more like 300 feet away."

Also important is that the researchers created the new laser structure via a scalable industrial process. Called metalorganic chemical vapor deposition (MOCVD), the process involves exposing a substrate to high heat and chemicals, causing the formation of layers on the substrate in an atomic-lattice configuration. Unlike previous crystal growth techniques, MOCVD allows manufacturers in addition to laboratory scientists to fabricate laser structures with varying compositions.

Varying the layers' composition is important in building a structure that prevents electrons from escaping the laser structure, a process called carrier leakage. "By suppressing carrier leakage, there is about 2.5 times less heating in the device while the laser is in continuous-wave operation," says Botez. "This is a dramatic improvement that means the device will be almost temperature insensitive."

The result will be continuous-wave lasers that Botez anticipates will achieve at least 20 percent wall-plug efficiency, which is the electrical-to-optical power efficiency of a laser system. Twenty percent efficiency would be roughly double the current world record for practical continuous-wave quantum cascade lasers.

Botez and Mawst are actively interested in commercializing the technology, which is covered by two issued and one pending U.S. patents.

For a more detailed story about the structure Botez and Mawst have created, visit www.engr.wisc.edu/news/headlines/2009/Dec07.html.

####

For more information, please click here

Contacts:
Sandra Knisely
608-265-8592

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Possible Futures

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Military

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Food/Agriculture/Supplements

Arrowhead Pharmaceuticals Presents Preclinical Data on Renal Cell Carcinoma Program at AACR 2016 April 19th, 2016

'Honeycomb' of nanotubes could boost genetic engineering April 7th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

For the first time scientists can observe the nano structure of food in 3-D March 31st, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic