Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New structure could produce efficient semiconductor laser sources

Abstract:
University of Wisconsin-Madison researchers have achieved a nanoscale laser structure they anticipate will produce semiconductor lasers in the next two years that are more than twice as efficient as current continuous-wave lasers emitting in the mid-infrared.

New structure could produce efficient semiconductor laser sources

Madison, WI | Posted on December 14th, 2009

"The novel structure will produce lasers with more power and that are more efficient, reliable and stable," says Dan Botez, Electrical and Computer Engineering Philip Dunham Reed Professor. He created the new structure with electrical and computer engineering professor Luke Mawst.

These next-generation lasers could benefit a wide range of industries, as they could be used in biomedical devices, environmental monitoring devices, missile avoidance systems and even food packaging processes. This wide range of applications is possible because the researchers have all but eliminated the temperature sensitivity for lasers operating in continuous-wave mode, meaning the laser emits uninterrupted, coherent light.

"For example, current mid-infrared laser technologies for detecting explosives can detect from only approximately 30 feet away," Botez says. "With these lasers, devices could detect explosives at more like 300 feet away."

Also important is that the researchers created the new laser structure via a scalable industrial process. Called metalorganic chemical vapor deposition (MOCVD), the process involves exposing a substrate to high heat and chemicals, causing the formation of layers on the substrate in an atomic-lattice configuration. Unlike previous crystal growth techniques, MOCVD allows manufacturers in addition to laboratory scientists to fabricate laser structures with varying compositions.

Varying the layers' composition is important in building a structure that prevents electrons from escaping the laser structure, a process called carrier leakage. "By suppressing carrier leakage, there is about 2.5 times less heating in the device while the laser is in continuous-wave operation," says Botez. "This is a dramatic improvement that means the device will be almost temperature insensitive."

The result will be continuous-wave lasers that Botez anticipates will achieve at least 20 percent wall-plug efficiency, which is the electrical-to-optical power efficiency of a laser system. Twenty percent efficiency would be roughly double the current world record for practical continuous-wave quantum cascade lasers.

Botez and Mawst are actively interested in commercializing the technology, which is covered by two issued and one pending U.S. patents.

For a more detailed story about the structure Botez and Mawst have created, visit www.engr.wisc.edu/news/headlines/2009/Dec07.html.

####

For more information, please click here

Contacts:
Sandra Knisely
608-265-8592

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Food/Agriculture/Supplements

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Photonics/Optics/Lasers

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project