Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Technology Could Boost Disease Detection Tests’ Speed and Sensitivity

Ayse Rezzan Kose (above) and Hur Koser developed a new method for identifying and sorting diseased cells in blood samples using magnetic nanoparticles.
Ayse Rezzan Kose (above) and Hur Koser developed a new method for identifying and sorting diseased cells in blood samples using magnetic nanoparticles.

Abstract:
A team led by Yale University scientists has developed a way to rapidly manipulate and sort different cells in the blood using magnetizable liquids. The findings, which will be published the week of December 7 in the online edition of the Proceedings of the National Academy of Sciences, could dramatically improve the speed and sensitivity of tests used to detect cancer biomarkers, blood disorders, viruses and other diseases.

New Technology Could Boost Disease Detection Tests’ Speed and Sensitivity

New Haven, CT | Posted on December 14th, 2009

Ferrofluids are comprised of magnetic nanoparticles suspended throughout a liquid carrier. They have been used in industrial applications for years, including in hard disk drives and loudspeakers. Now a team led by Hur Koser, associate professor at the Yale School of Engineering & Applied Science, has developed a biocompatible ferrofluid—one with the right pH level and salinity so that human cells can survive in it for several hours—and has created a device with integrated electrodes that generate a magnetic field pattern, allowing them to manipulate and separate red blood cells, sickle cells and bacteria contained in this unique solution.

The magnetic field attracts the nanoparticles in the ferrofluid, effectively pushing and shuffling the much larger, nonmagnetic cells along specific channels. Depending on the frequency of the magnetic field they apply, the researchers are also able to manipulate and sort different types of cells depending on their size, elasticity and shape.

"It's like the cells are surfing on magnetic forces," Koser said. "When we turn on the magnetic field, the nonmagnetic cells are pushed immediately up to the top of the channel." There, they roll along the surface and can be quickly directed toward a sensor.

While other cell manipulation techniques exist, this new method is unique in that it doesn't require attaching biomarkers, or labels, to the cells and there is no need for labor-intensive preparation or post-processing.

Being able to effectively sort and move cells with this technique could allow for much greater efficiency in disease detection by directing diseased cells toward sensors. Many of today's tests require hours or even days to complete, because the concentration of diseased cells in a blood sample may be so low that it takes a long time for them to randomly bump into the sensors. In early-stage cancer, for instance, there could be one tumor cell for every billion healthy cells, making them extremely difficult to detect.

"Effective and efficient separation is very important when you're looking for a needle in a haystack," said Ayse Rezzan Kose, a graduate student in the Koser Lab and the lead author of the study. "We're hoping we can achieve an increase of several orders of magnitude in the sensitivity of existing detection technologies. If so, a blood sample analysis could be completed in minutes, not hours or days."

Koser hopes that one day the new technique will lead to portable sensors that doctors can carry into the field and which could be used to test for a range of disorders, such as cancer and HIV. "Anything you can put into the ferrofluid solution is potentially detectable in this manner."

Authors of the paper include Ayse Rezzan Kose and Hur Koser (Yale University), Birgit Fischer (Deutsches Elektronen-Synchrotron) and Leidong Mao (University of Georgia).

This research was funded by the National Science Foundation, the National Institutes of Health and the Yale Institute for Nanoscience and Quantum Engineering.

Citation: 10.1073/pnas.0912138106

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale

For more information, please click here

Contacts:
Press Contact
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Possible Futures

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Sensors

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Nanobiotechnology

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotix appoints senior executive from pharmaceutical industry, as Chief Operating Officer: Oncology industry veteran to oversee operations and product commercialization February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project