Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Technology Could Boost Disease Detection Tests’ Speed and Sensitivity

Ayse Rezzan Kose (above) and Hur Koser developed a new method for identifying and sorting diseased cells in blood samples using magnetic nanoparticles.
Ayse Rezzan Kose (above) and Hur Koser developed a new method for identifying and sorting diseased cells in blood samples using magnetic nanoparticles.

Abstract:
A team led by Yale University scientists has developed a way to rapidly manipulate and sort different cells in the blood using magnetizable liquids. The findings, which will be published the week of December 7 in the online edition of the Proceedings of the National Academy of Sciences, could dramatically improve the speed and sensitivity of tests used to detect cancer biomarkers, blood disorders, viruses and other diseases.

New Technology Could Boost Disease Detection Tests’ Speed and Sensitivity

New Haven, CT | Posted on December 14th, 2009

Ferrofluids are comprised of magnetic nanoparticles suspended throughout a liquid carrier. They have been used in industrial applications for years, including in hard disk drives and loudspeakers. Now a team led by Hur Koser, associate professor at the Yale School of Engineering & Applied Science, has developed a biocompatible ferrofluid—one with the right pH level and salinity so that human cells can survive in it for several hours—and has created a device with integrated electrodes that generate a magnetic field pattern, allowing them to manipulate and separate red blood cells, sickle cells and bacteria contained in this unique solution.

The magnetic field attracts the nanoparticles in the ferrofluid, effectively pushing and shuffling the much larger, nonmagnetic cells along specific channels. Depending on the frequency of the magnetic field they apply, the researchers are also able to manipulate and sort different types of cells depending on their size, elasticity and shape.

"It's like the cells are surfing on magnetic forces," Koser said. "When we turn on the magnetic field, the nonmagnetic cells are pushed immediately up to the top of the channel." There, they roll along the surface and can be quickly directed toward a sensor.

While other cell manipulation techniques exist, this new method is unique in that it doesn't require attaching biomarkers, or labels, to the cells and there is no need for labor-intensive preparation or post-processing.

Being able to effectively sort and move cells with this technique could allow for much greater efficiency in disease detection by directing diseased cells toward sensors. Many of today's tests require hours or even days to complete, because the concentration of diseased cells in a blood sample may be so low that it takes a long time for them to randomly bump into the sensors. In early-stage cancer, for instance, there could be one tumor cell for every billion healthy cells, making them extremely difficult to detect.

"Effective and efficient separation is very important when you're looking for a needle in a haystack," said Ayse Rezzan Kose, a graduate student in the Koser Lab and the lead author of the study. "We're hoping we can achieve an increase of several orders of magnitude in the sensitivity of existing detection technologies. If so, a blood sample analysis could be completed in minutes, not hours or days."

Koser hopes that one day the new technique will lead to portable sensors that doctors can carry into the field and which could be used to test for a range of disorders, such as cancer and HIV. "Anything you can put into the ferrofluid solution is potentially detectable in this manner."

Authors of the paper include Ayse Rezzan Kose and Hur Koser (Yale University), Birgit Fischer (Deutsches Elektronen-Synchrotron) and Leidong Mao (University of Georgia).

This research was funded by the National Science Foundation, the National Institutes of Health and the Yale Institute for Nanoscience and Quantum Engineering.

Citation: 10.1073/pnas.0912138106

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale

For more information, please click here

Contacts:
Press Contact
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanobiotechnology

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project