Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Absorbing Hydrogen Fluoride Gas to Enhance Crystal Growth

Vyacheslav Solovyov (left) and Harold "Bud" Wiesmann
Vyacheslav Solovyov (left) and Harold "Bud" Wiesmann

Abstract:
Newly patented method could improve superconductors, optical devices, and microelectronics.

Absorbing Hydrogen Fluoride Gas to Enhance Crystal Growth

Upton, NY | Posted on December 10th, 2009

Two scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have developed a method to control the buildup of hydrogen fluoride gas during the growth of precision crystals needed for applications such as superconductors, optical devices, and microelectronics. The invention — by Vyacheslav Solovyov and Harold Wiesmann and recently awarded U.S. Patent number 7,622,426 — could lead to more efficient production and improved performance of these materials.

Materials with highly ordered crystalline atomic structures have enormous potential for energy-saving devices such as superconductors, which carry current with no energy loss, and high-speed electronics. Such crystals are typically grown from precursors deposited on substrates — for example: tapes, wires, or wafers, such as those used in the production of computer chips.

Adding fluorine to the precursors enhances the transfer of crystalline order from the substrate to the growing material. But fluorine also presents a problem because it leads to the buildup of hydrogen fluoride gas. Hydrogen fluoride slows down the reaction that converts the precursor to the desired material, sometimes even stopping crystal growth in its tracks.

"You might think you could just vent the accumulating gas, but such methods have proven impractical," said Wiesmann. For one thing, you'd have to remove the gas uniformly, to avoid variations in pressure that might affect crystal growth, which becomes more difficult over larger areas. Also, other gases necessary to crystal growth, such as oxygen and water vapor, get extracted along with the hydrogen fluoride, and re-injecting these gases introduces more pressure problems.

"We've developed an improved method for removing hydrogen fluoride, based on absorption, that enhances the production of high-quality crystalline products." Wiesmann said.

The new method incorporates a solid material capable of absorbing hydrogen fluoride (HF) gas inside the reaction chamber. The solid material can be attached to the inner surface of the reaction chamber or free standing, as long as it is made to conform to the shape of the precursor at a uniform distance. This allows uniform extraction of HF across large areas, thereby yielding crystalline end products that are uniform and homogeneous regardless of the shape of the precursor material or the area it occupies inside the reaction chamber.

A wide range of materials from alkaline earth oxides to materials containing calcium, sodium, or even activated carbon can be used as HF absorbers. The HF absorber material could be sprayed, painted, or otherwise deposited onto an inert support such as quartz or various oxides to attach it to the reaction chamber. Or it could be made from a powder and pressed into a form that conforms to the shape of the growing crystals.

"Because these materials selectively absorb HF gas, water vapor, oxygen, and other gases that may be present and necessary for the conversion of the precursor material to finished crystals remain in the reaction vessel, undisturbed," Solovyov said.

Solovyov and Wiesmann demonstrated the effectiveness of this approach when growing crystals of a common yttrium-barium-copper-oxide (YBCO) superconductor. In these experiments, YBCO crystals grew at a faster rate in the presence of a barium-oxide HF absorber when compared to conventional methods of crystal growth. The method also preserves the uniformity of the crystal growth environment so that superconducting properties do not vary along the length of the film.

This specific reaction serves as only one example, and the patent applies to the many possible modifications and variations in the materials used and produced.

The new method is available for licensing and commercial development. For further information about the patent and commerical opportunities, contact Brookhaven Lab licensing specialist Kimberley Elcess, 631 344-4151.

The research was funded by DOE's Office of Electricity Delivery and Energy Reliability.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Chip Technology

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Patents/IP/Tech Transfer/Licensing

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE