Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Nanoscale Development With Macro Potential

Assistant professor Andrew MacKay.  
Photo/Kukla Vera
Assistant professor Andrew MacKay. Photo/Kukla Vera

Abstract:
The future of cancer treatment might be microscopic in size, at least according to USC School of Pharmacy assistant professor Andrew MacKay's groundbreaking research.

A Nanoscale Development With Macro Potential

Los Angeles, CA | Posted on December 9th, 2009

MacKay developed new strategies that, when executed on a nanoscale, have successfully led to tumor regression. The strategies involve the self-assembly of genetically engineered materials into nanoscale, drug-loaded packages.

MacKay and his team developed an artificial recombinant, chimeric polypeptide (CP) that spontaneously self-assembles into near-monodisperse, 40-nm-sized nanoparticles. His group demonstrated that this approach is a general and simple strategy to form drug-loaded nanomedicines from safe, biodegradable polypeptides.

These nanomedicines were used to deliver chemotherapeutics to mouse tumors and proved to be more effective than free drugs (an active drug that is not bound to a carrier protein). Not only did drug tolerance increase fourfold, but the use of these innovative chemotherapeutics led to nearly complete tumor regression after only a single dose. While the tumor used in the laboratory was associated with colon cancer in mice, this approach also could be used to treat a variety of cancers.

MacKay believes that packaging drugs into nanoscale delivery vehicles could be particularly useful for cancer therapy. Until now, mechanisms to assemble nanomedicines have relied on complex strategies using non-biocompatible materials.

To overcome this deficiency, MacKay and co-workers designed their drug carriers from a polypeptide sequence found in an elastic protein in human tissues. MacKay identified this approach as one of the necessary criteria to develop effective cancer drug treatments. The genetically engineered chimeric polypeptide molecules allow for this assembly and are novel for their generality, simplicity and biodegradability.

Although MacKay's developments are on a small scale, their impact has huge potential. His work with chimeric polypeptide and nanomedicines was featured in Nature Materials in November.

####

About University of Southern California
Located in Los Angeles, a global center for arts, technology and international trade, the University of Southern California is one of the world’s leading private research universities. USC enrolls more international students than any other U.S. university and offers extensive opportunities for internships and study abroad. With a strong tradition of integrating liberal and professional education, USC fosters a vibrant culture of public service and encourages students to cross academic as well as geographic boundaries in their pursuit of knowledge.

For more information, please click here

Contacts:

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project