Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Nanoscale Development With Macro Potential

Assistant professor Andrew MacKay.  
Photo/Kukla Vera
Assistant professor Andrew MacKay. Photo/Kukla Vera

Abstract:
The future of cancer treatment might be microscopic in size, at least according to USC School of Pharmacy assistant professor Andrew MacKay's groundbreaking research.

A Nanoscale Development With Macro Potential

Los Angeles, CA | Posted on December 9th, 2009

MacKay developed new strategies that, when executed on a nanoscale, have successfully led to tumor regression. The strategies involve the self-assembly of genetically engineered materials into nanoscale, drug-loaded packages.

MacKay and his team developed an artificial recombinant, chimeric polypeptide (CP) that spontaneously self-assembles into near-monodisperse, 40-nm-sized nanoparticles. His group demonstrated that this approach is a general and simple strategy to form drug-loaded nanomedicines from safe, biodegradable polypeptides.

These nanomedicines were used to deliver chemotherapeutics to mouse tumors and proved to be more effective than free drugs (an active drug that is not bound to a carrier protein). Not only did drug tolerance increase fourfold, but the use of these innovative chemotherapeutics led to nearly complete tumor regression after only a single dose. While the tumor used in the laboratory was associated with colon cancer in mice, this approach also could be used to treat a variety of cancers.

MacKay believes that packaging drugs into nanoscale delivery vehicles could be particularly useful for cancer therapy. Until now, mechanisms to assemble nanomedicines have relied on complex strategies using non-biocompatible materials.

To overcome this deficiency, MacKay and co-workers designed their drug carriers from a polypeptide sequence found in an elastic protein in human tissues. MacKay identified this approach as one of the necessary criteria to develop effective cancer drug treatments. The genetically engineered chimeric polypeptide molecules allow for this assembly and are novel for their generality, simplicity and biodegradability.

Although MacKay's developments are on a small scale, their impact has huge potential. His work with chimeric polypeptide and nanomedicines was featured in Nature Materials in November.

####

About University of Southern California
Located in Los Angeles, a global center for arts, technology and international trade, the University of Southern California is one of the world’s leading private research universities. USC enrolls more international students than any other U.S. university and offers extensive opportunities for internships and study abroad. With a strong tradition of integrating liberal and professional education, USC fosters a vibrant culture of public service and encourages students to cross academic as well as geographic boundaries in their pursuit of knowledge.

For more information, please click here

Contacts:

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Self Assembly

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE