Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UD scientists take theoretical research on 'nasty' molecule to next level

Konrad Patkowski, a postdoctoral researcher at UD who works with physicist Krzysztof Szalewicz, is the lead author of an article in the prestigious journal Science, confirming a 12th and highest vibrational level for the beryllium molecule.
Konrad Patkowski, a postdoctoral researcher at UD who works with physicist Krzysztof Szalewicz, is the lead author of an article in the prestigious journal Science, confirming a 12th and highest vibrational level for the beryllium molecule.

Abstract:
Some atoms don't always follow the rules.

UD scientists take theoretical research on 'nasty' molecule to next level

Newark, DE | Posted on December 8th, 2009

Take the beryllium dimer, a seemingly simple molecule made up of two atoms that University of Delaware physicists Krzysztof Szalewicz and Konrad Patkowski and colleague Vladimír Spirko of the Academy of Sciences of the Czech Republic report on in the Dec. 4 edition of the journal Science.

Beryllium is a strong, hard, toxic metal found naturally in minerals such as emeralds and commonly used as an alloy with other metals in many applications, from the tweeters of loudspeakers for public address systems to elements of nuclear weapons.

For decades, scientists believed the two atoms that compose the beryllium dimer repelled each other. That follows a basic theory of chemistry that explains how the electrons in a molecule occupy different orbitals, says Patkowski, a postdoctoral researcher at UD who works in the Szalewicz Lab and was the lead author of the study.

However, in the 1960s, scientists discovered that instead of repelling each other, the two atoms actually bond with each other.

More than 100 theoretical papers have been published on this bonding energy, Patkowski says, but they report a wide range of predictions and the most trustworthy ones differed dramatically from the measured value.

However, in May 2009, a scientific team from Emory University reported in Science the results of an experimental study that recorded the vibrational energy of the bonding atoms for 11 levels, finally reconciling the experimental and theoretical models.

"A molecule vibrates, so the distance between atoms changes in time. A molecule can't just sit there and not vibrate," Patkowski explains. "The more vibrational energy a molecule has, the farther its atoms stray from their equilibrium positions."

In this latest issue of Science, the UD-led team confirms a 12th and highest vibrational level for the beryllium molecule, thanks in part to their Czech colleague Spirko's expertise in "morphing," which enables researchers to make simple changes to the theoretical interaction energy curve to agree with experimental findings. Morphed versions of this potential energy, fitted to experimental data, closely reproduce the observed spectra.

Patkowski notes that the UD study was close to completion when the Emory team published their results.

"Their results agreed with our study, so it was really gratifying to see the previous mysterious disagreement between experimental and theoretical numbers from the past disappear. Their work showed us we were going in the right direction," Patkowski notes.

The beryllium dimer is commonly used in benchmarking studies in experimental and theoretical physics, yet the molecule is anything but common, Patkowski says.

"It's a prototype system that is small and nasty, both for experimental studies, because of its toxicity and reactivity, and for theoretical studies, because standard quantum chemistry methods work very poorly here," he notes.

"The interesting thing about this molecule is that basic chemistry knowledge tells us that the atoms are not going to bond, but they do -- and it's a pretty strong one. It's a nice model for developing new theories of molecular physics," Patkowski says.

The research was funded by the National Science Foundation (U.S.) and by the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports.

####

About University of Delaware
A state-assisted, privately governed institution, UD offers courses in a broad range of disciplines, including 4 associate’s programs, 130 bachelor’s programs, 79 master's programs and 39 doctoral programs through our seven colleges and in collaboration with more than 50 research centers. Our student body includes more than 16,000 undergraduates, 3,500 graduate students, and 1,000 students in professional and continuing studies from across the United States and around the world. Courses are offered across seven colleges: College of Agriculture and Natural Resources; College of Arts and Sciences; Lerner College of Business and Economics; College of Earth, Ocean, and Environment; College of Education and Public Policy; College of Engineering; and College of Health Sciences.

For more information, please click here

Contacts:
Office of Communications & Marketing
The Academy Building
105 East Main Street
University of Delaware
Newark, DE 19716 • USA
Phone: (302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Chemistry

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Quantum nanoscience

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project