Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A little magic provides an atomic-level look at bone

Ayyalusamy Ramamoorthy
Ayyalusamy Ramamoorthy

Abstract:
A new study using solid-state NMR spectroscopy to analyze intact bone paves the way for atomic-level explorations of how disease and aging affect bone.

A little magic provides an atomic-level look at bone

Ann Arbor, MI | Posted on December 4th, 2009

The research by scientists at the University of Michigan is reported in the Dec. 2 issue of the Journal of the American Chemical Society.

"If people think of bone at all—and they usually don't, until they have a fracture—they think of it as an inert material," said Ayyalusamy Ramamoorthy, professor of chemistry and of biophysics. "But like everything else, bone is also made up of molecules whose behavior is reflected in its structure, toughness and mechanical strength, making bone really exciting in terms of its chemistry and its contribution to health and well-being,"

As scientists strive to understand the human body and its diseases in terms of molecular behavior, bone presents a challenge to most analytical techniques. "However, solid-state NMR spectroscopy is an ideal tool for exploring what goes on inside bone at nanoscopic resolution," Ramamoorthy said. "It is possible to probe the structure and dynamics of individual molecules that constitute bone without any physical damage or chemical modification."

But while solid-state NMR spectroscopy is capable of revealing complete nanoscopic details of molecular events from most samples, it often provides so many details that they're difficult to tease apart and analyze. Ramamoorthy, whose children are fans of the Magic School Bus science series, challenged his lab group to find ways of "driving around" to explore the interior of bone, just as characters on the series might in their imaginary world. The researchers' real-world approach involved a different kind of magic.

Ramamoorthy and colleagues used a variation of solid-state NMR (nuclear magnetic resonance) spectroscopy called magic-angle spinning, a non-invasive technique that makes solid material as amenable to analysis as solutions are. Previous NMR studies have used pulverized bone, but the U-M group's instruments and methods made it possible to analyze a sample of intact cow bone. The bone sample was shaped to just fit the rotor that is spun at the so-called magic angle inside the probe of a solid-state NMR spectrometer.

With this technique, the researchers examined changes that occur in bone with water loss. The water content of bone tissue decreases with age, which—by affecting both collagen and minerals—reduces bone's strength and toughness.

"We were able to see dynamical structural changes with the main protein, collagen," Ramamoorthy said. "Its characteristic triple helix structure was not completely damaged, but its mobility was altered, in addition to a disorder in the structure."

The success of the study makes possible future research into how bone's constituents behave under different conditions.

"We'd like to look at how bone changes at the atomic level, as a function of aging," Ramamoorthy said, "and to make comparisons between diseased and healthy bone." Such studies may provide insights into the susceptibility of bone to fracture, especially in the osteoporotic tissues of many elderly people.

Ramamoorthy's coauthors on the paper are postdoctoral fellows Peizhi Zhu and Jiadi Xu, graduate student Nadder Sahar, chemistry professor Michael Morris and David Kohn, professor of biomedical engineering and of dentistry.

Funding was provided by the National Institutes of Health, the National Science Foundation and the Department of Defense.

####

About University of Michigan
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.

For more information, please click here

Contacts:
Nancy Ross-Flanigan
(734) 647-1853

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Possible Futures

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanobiotechnology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project