Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Entangled Photons from Quantum Dots

Abstract:
JQI Researchers Create Entangled Photons from Quantum Dots

News from the Public Affairs Office at the National Institute of Standards and Technology

Entangled Photons from Quantum Dots

College Park, MD | Posted on December 4th, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another.

Now, physicists at the Joint Quantum Institute have developed a promising new source of entangled photons using quantum dots tweaked with a laser. The JQI technique may someday enable more compact and convenient sources of entangled photon pairs than presently available for quantum information applications such as the distribution of "quantum keys" for encrypting sensitive messages.

Quantum dots are nanometer-scale bits of semiconductor—so small that electrical charges in the dots are confined in all directions. They can be made to emit photons—fluoresce—by pumping in energy to create so-called "excitons," a pairing of an electron and the electron-less "hole." When the electron falls back into the hole, the excess energy is released as a photon. Quantum dots can also host the even more exotic "biexciton," composed of two electrons and two holes.

When a short-lived biexciton decomposes, it undergoes two drops in energy, analogous to descending two rungs of a ladder, and a photon is released at each stage. Physicists have long been trying to use this process to get pairs of entangled photons from quantum dots. What makes entanglement possible is that the biexciton could decay along one of two possible pathways, analogous to two different ladders that both get it to the ground. During its descent it releases a pair of photons with a different kind of polarization (electric field direction) depending on the ladder it descends. If the energy drop at each stage is exactly the same in both pathways, so that the ladders look identical, the pathways become indistinguishable—and as a result the biexciton releases photons with undetermined polarization values. Measuring a photon would both determine its polarization and instantly define its partner's—a hallmark of entanglement.

But imperfections within the structure of the quantum dot create differences in the energy levels (rung heights) between the two pathways, making them distinguishable and creating photons with predetermined, clearly defined polarizations. Except in rare instances, this holds true even for the reliable, widely fabricated indium gallium arsenide (InGaAs) dots that JQI researcher Andreas Muller and his colleagues created at NIST. Muller and his coworkers solved this problem by beaming a laser at the quantum dot. The laser's electric field shifts the energy levels in one of the pathways so that the two pathways match up, resulting in the emission of entangled photons.

Entangled photons have come from individual quantum dots before but they have been spotted by hunting for dots in large samples whose imperfections accidentally gave the two pathways identical energy structure. JQI group leader Glenn Solomon says that this entanglement technique could work for a wide variety of quantum dots. Though the dots must be cooled to cryogenic temperatures, he adds that quantum dots could offer advantages as entanglement sources over their conventional crystal counterparts as they are less bulky and can conveniently produce one pair of entangled photons at a time, instead of in bunches.

A. Muller, W.F.Fang, J. Lawall and G.S. Solomon. "Creating polarization-entangled photons from a quantum dot." Upcoming in Physical Review Letters.

####

About Joint Quantum Institute, University of Maryland
The Joint Quantum Institute is a research partnership between University of Maryland (UMD) and the National Institute of Standards and Technology, with the support and participation of the Laboratory for Physical Sciences.

Created in 2006 to pursue theoretical and experimental studies of quantum physics in the context of information science and technology, JQI is located on UMD's College Park campus.

For more information, please click here

Contacts:
Media Contact at NIST
Ben Stein

(301) 975-3097

Copyright © National Institute of Standards and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Quantum Dots/Rods

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE