Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Taking the Heat: Pitt Team Conquers Hurdle to Nano Devices With First Metallic Nanoparticles Resistant to Extreme Heat

Abstract:
Just as a gecko sheds its tail, metal-alloy particles endure 850 degrees Celsius by ditching weaker components, researchers report in Nature Materials.

Taking the Heat: Pitt Team Conquers Hurdle to Nano Devices With First Metallic Nanoparticles Resistant to Extreme Heat

Pittsburgh, PA | Posted on December 2nd, 2009

A University of Pittsburgh team overcame a major hurdle plaguing the development of nanomaterials such as those that could lead to more efficient catalysts used to produce hydrogen and render car exhaust less toxic. The researchers reported Nov. 29 in Nature Materials the first demonstration of high-temperature stability in metallic nanoparticles, the vaunted next-generation materials hampered by a vulnerability to extreme heat.

Götz Veser, an associate professor and CNG Faculty Fellow of chemical and petroleum engineering in Pitt's Swanson School of Engineering, and Anmin Cao, the paper's lead author and a postdoctoral researcher in Veser's lab, created metal-alloy particles in the range of 4 nanometers that can withstand temperatures of more than 850 degrees Celsius, at least 250 degrees more than typical metallic nanoparticles. Forged from the catalytic metals platinum and rhodium, the highly reactive particles work by dumping their heat-susceptible components as temperatures rise, a quality Cao likened to a gecko shedding its tail in self-defense.

"The natural instability of particles at this scale is an obstacle for many applications, from sensors to fuel production," Veser said. "The amazing potential of nanoparticles to open up completely new fields and allow for dramatically more efficient processes has been shown in laboratory applications, but very little of it has translated to real life because of such issues as heat sensitivity. For us to reap the benefits of nanoparticles, they must withstand the harsh conditions of actual use."

Veser and Cao present an original approach to stabilizing metallic catalysts smaller than 5 nanometers. Materials within this size range boast a higher surface area and permit near-total particle utilization, allowing for more efficient reactions. But they also fuse together at around 600 degrees Celsius-lower than usual reaction temperatures for many catalytic processes-and become too large. Attempts to stabilize the metals have involved encasing them in heat-resistant nanostructures, but the most promising methods were only demonstrated in the 10- to 15-nanometer range, Cao wrote. Veser himself has designed oxide-based nanostructures that stabilized particles as small as 10 nanometers.

For the research in "Nature Materials," he and Cao blended platinum and rhodium, which has a high melting point. They tested the alloy via a methane combustion reaction and found that the composite was not only a highly reactive catalyst, but that the particles maintained an average size of 4.3 nanometers, even during extended exposure to 850-degree heat. In fact, small amounts of 4-nanometer particles remained after the temperature topped 950 degrees Celsius, although the majority had ballooned to eight-times that size.

Veser and Cao were surprised to find that the alloy did not simply endure the heat. It instead sacrificed the low-tolerance platinum then reconstituted itself as a rhodium-rich catalyst to finish the reaction. At around 700 degrees Celsius, the platinum-rhodium alloy began to melt. The platinum "bled" from the particle and formed larger particles with other errant platinum, leaving the more durable alloyed particles to weather on. Veser and Cao predicted that this self-stabilization would occur for all metal catalysts alloyed with a second, more durable metal.

Veser and Cao conducted their work with support from the National Energy Technology Laboratory, the lead research and development office for the U.S. Department of Energy's (DOE) Office of Fossil Energy, as well as the DOE's Office of Basic Energy Sciences and the National Science Foundation.

####

About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the more than 220 years since, the University has evolved into an internationally recognized center of learning and research.

For more information, please click here

Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Chemistry

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Environment

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Automotive/Transportation

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project