Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > INBT researchers use LEGO to study what happens inside lab-on-a-chip devices

German Drazer, asst. prof. of ChemBE, shows how a LEGO set-up can explain forces in mircofluidic arrays. (Will Kirk/JHU)
German Drazer, asst. prof. of ChemBE, shows how a LEGO set-up can explain forces in mircofluidic arrays. (Will Kirk/JHU)

Abstract:
Johns Hopkins engineers are using a popular children's toy to help them visualize the behavior of particles, cells and molecules in environments too small to see with the naked eye.

INBT researchers use LEGO to study what happens inside lab-on-a-chip devices

Baltimore, MD | Posted on December 2nd, 2009

These researchers are arranging little LEGO pieces shaped like pegs to recreate microscopic activity taking place inside lab-on-a-chip devices at a scale they can more easily observe. These lab-on-a-chip devices, also known as microfluidic arrays, are commonly used to sort tiny samples by size, shape or composition, but the minuscule forces at work at such a small magnitude are difficult to measure. To solve this small problem, the Johns Hopkins engineers decided to think big.

Led by Joelle Frechette and German Drazer, both assistant professors of chemical and biomolecular engineering in the Whiting School of Engineering, the team used beads just a few millimeters in diameter, an aquarium filled with goopy glycerol and the LEGO pieces arranged on a LEGO board to unlock mysteries occurring at the micro- or nanoscale level. Their observations could offer clues on how to improve the design and fabrication of lab-on-a-chip technology. Their study concerning this technique was published in the August 14 issue of Physical Review Letters. Both Drazer and Frechette are affiliated faculty members of Johns Hopkins Institute for NanoBioTechnology.

The idea for this project comes from the concept of "dimensional analysis," in which a process is studied at a different size and time scale while keeping the governing principles the same.

"Microfluidic arrays are like miniature chemical plants," Frechette says. "One of the key components of these devices is the ability to separate one type of constituent from another. We investigated a microfluidic separation method that we suspected would remain the same when you scale it up from micrometers or nanometers to something as large as the size of billiard balls."

With this goal in mind, Frechette and Drazer constructed an array using cylindrical LEGO pegs stacked two high and arranged in rows and columns on a LEGO board to create a lattice of obstacles. The board was attached to a Plexiglas sheet to improve its stiffness and pressed up against one wall of a Plexiglas tank filled with glycerol. Stainless steel balls of three different sizes, as well as plastic balls, were manually released from the top of the array. Their paths to the bottom were tracked and timed with a camera.

The entire set-up, Drazer said, cost a few hundred dollars and could easily be replicated as a science fair experiment.

Graduate students Manuel Balvin and Tara Iracki, and undergraduate Eunkyung Sohn, all from the Department of Chemical and Biomolecular Engineering, performed multiple trials using each type of bead. They progressively rotated the board, increasing the relative angle between gravity and the columns of the array (that is, altering the forcing angle). In doing so, they saw that the large particles did not move through the array in a diffuse or random manner, as their small counterparts usually did in a microfluidic array. Instead, their paths were deterministic, meaning that they could be predicted with precision, Drazer said.

The researchers also noticed that the path followed by the balls was periodic once the balls were in motion and coincided with the direction of the lattice. As the forcing angle increased, some of the balls tended to shift over one, two, three or as many as four pegs before continuing their vertical fall.

"Our experiment shows that if you know one single parameter—a measure of the asymmetry in the motion of a particle around a single obstacle—you can predict the path that particles will follow in a microfluidic array at any forcing angle, simply by doing geometry." Drazer said.

The fact that the balls moved in the same direction inside the array for different forcing angles is referred to as phase-locking. If the array were to be scaled down to micro- or nanosize, the researchers said they would expect these phenomena to still be present and even increase depending on the factors such as the unavoidable irregularities of particle size or surface roughness.

"There are forces present between a particle and an obstacle when they get really close to each other, which are present whether the system is at the micro- or nanoscale or as large as the LEGO board," Frechette said. "In this separation method, the periodic arrangement of the obstacles allows the small effect of these forces to accumulate, and amplify, which we suspect is the mechanism for particle separation."

This principle could be applied to the design of micro- or nanofluidic arrays, she added, so that they could be fabricated to "sort particles that had a different roughness, different charge or different size. They should follow a different path in an array and could be collected separately."

Phase-locking is likely to become less important, Drazer cautioned, as the number of particles in solution becomes more concentrated. "Next," he said, "we have to look at how concentrated your suspension can be before this principle is destroyed by particle-particle interactions."

The research was funded by grants from the National Science Foundation and the American Chemical Society Petroleum Research Fund.

Reference: "Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices" Manuel Balvin, Eunkyung Sohn, Tara Iracki, German Drazer, and Joelle Frechette, Phys. Rev. Lett. 103, 078301 (2009).

Story by Mary Spiro

####

About Johns Hopkins
The Institute for NanoBioTechnology at Johns Hopkins University brings together 193 researchers from: Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory, and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

For more information, please click here

Contacts:
For media inquiries contact:
Mary Spiro

410 516-4802

Copyright © Johns Hopkins

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Microfluidics/Nanofluidics

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Videos/Movies

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Possible Futures

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Announcements

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project