Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Air Force Center of Excellence awarded in nanostructures and improved cognition

Michelle LaPlaca, a biomedical engineering associate professor, is developing tools and assessment methods to optimize critical cognitive processes of the modern warfighter.

Credit: Georgia Tech Photo: Rob Felt
Michelle LaPlaca, a biomedical engineering associate professor, is developing tools and assessment methods to optimize critical cognitive processes of the modern warfighter. Credit: Georgia Tech Photo: Rob Felt

Abstract:
The Georgia Institute of Technology has been awarded a U.S. Air Force Center of Excellence to design nanostructures for energy harvesting and adaptive materials, and to develop tools to optimize critical cognitive processes of the modern warfighter.

Air Force Center of Excellence awarded in nanostructures and improved cognition

Atlanta, GA | Posted on December 1st, 2009

The $10.5 million Center, known as the Bio-nano-enabled Inorganic/Organic Nanostructures and Improved Cognition (BIONIC) center, is being led by Vladimir Tsukruk and Kenneth Sandhage, professors in Georgia Tech's School of Materials Science and Engineering.

"Advanced materials is an area of importance for the Air Force since the landscape of materials science is rapidly changing and bio-nano-materials are classes of pervasive materials that exhibit unique capabilities and have the potential to address Air Force needs," explained Rajesh Naik, a scientist in the U.S. Air Force Research Laboratory (AFRL) Materials and Manufacturing Directorate. "In addition, improved cognition tools are required for assessing the cognitive ability of the warfighter as we ask for more from our human operators in the most demanding environments."

The BIONIC center includes a group of core members from six departments within the Georgia Tech Colleges of Sciences and Engineering, a researcher at The Ohio State University, and scientists and engineers at AFRL. Lockheed Martin Aeronautics Company is also an industrial collaborator.

Funding for the Center of Excellence is provided by the Materials and Manufacturing Directorate and Human Effectiveness Directorate of AFRL, the U.S. Air Force Office of Scientific Research and Georgia Tech. The initial award is for three years, with the possibility of an additional two-year extension.

"Georgia Tech was chosen to lead this Center of Excellence because of its investment in infrastructure development, including new facilities and instrumentation; its recruitment of high-caliber faculty members and students; and its emphasis in bio-nanotechnology and cognitive sciences," said Morley Stone, chief scientist of the Human Performance Wing of AFRL's Human Effectiveness Directorate.

There are three major research thrusts, called interdisciplinary research groups, within the BIONIC center. Each group contains several collaborators from AFRL's Materials and Manufacturing Directorate or Human Effectiveness Directorate.

For the first thrust, which is led by Sandhage, researchers are designing, fabricating, characterizing and modeling the performance of inorganic/organic nanocomposites for efficient, remote energy-harvesting devices, such as photovoltaics and batteries.

"The U.S. Air Force utilizes autonomous drones that they would like to operate for longer periods of time," explained co-director Sandhage, who holds the B. Mifflin Hood Professorship in the School of Materials Science and Engineering and an adjunct position in the School of Chemistry and Biochemistry. "To do that, they need a cost-effective energy source that can perform efficiently for extended periods of time, while also providing high pulses of power when needed."

Tsukruk is leading the second interdisciplinary research group, which is focused on designing, fabricating, characterizing and simulating the performance of inorganic/organic nanocomposites for tunable, adaptive materials.

"When these adaptive materials are exposed to heat or light or both, they will change their properties in ways that will be useful for sensing or morphing surfaces," said co-director Tsukruk, who also holds a joint appointment in Georgia Tech's School of Polymer, Textile and Fiber Engineering.

The third thrust is being led by Michelle LaPlaca, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. LaPlaca and her team plan to develop tools and assessment methods to optimize critical cognitive processes of the modern warfighter.

"U.S. Air Force analysts must remain attentive to computers and controls for hours at a time, so we aim to find a molecular signature of cognition that is sensitive to changes in stress levels and correlate these molecules with functional brain maps using magnetic resonance imaging techniques," said LaPlaca. "We want to learn about a warfighter's physiological response to different situations and use this information to optimize training and work effectiveness."

In addition to its research objectives, another goal for the Center of Excellence is to conduct stimulating collaborative research that will motivate students to consider working at AFRL.

"At Georgia Tech, we've had a history of sending outstanding alumni to work at AFRL, including three of our recent Ph.D. graduates. As students, they were able to collaborate with researchers at AFRL and spend extended periods of time at the AFRL facilities, which opened their eyes to AFRL's exciting opportunities and dynamic research atmosphere," said Sandhage.

Other core members of the Center include Regents' Professor Mostafa El-Sayed, professor Seth Marder and assistant professor Nils Kroger from the Georgia Tech School of Chemistry and Biochemistry; professor Bernard Kippelen from the Georgia Tech School of Electrical and Computer Engineering; Shella Keilholz, an assistant professor in the Coulter Department of Biomedical Engineering; Eric Schumacher, an assistant professor in the Georgia Tech School of Psychology; and Hamish Fraser, a professor in the Department of Materials Science and Engineering at The Ohio State University.

Researchers will be added to this core group as early as next year, when the Center begins awarding seed grants to Georgia Tech faculty members.

"The goal of this seed grant program is to establish new connections to talented Georgia Tech faculty members that can result in long-term relationships and fruitful collaborations with the U.S. Air Force," added Sandhage.

###

This material is based upon work supported by the U.S. Air Force under Award No. FA9550-09-1-0162. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the principal investigators and do not necessarily reflect the views of the U.S. Air Force.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.

Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 19,000 undergraduate and graduate students receive a focused, technologically based education.

For more information, please click here

Contacts:
Abby Vogel

404-385-3364

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Sensors

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Materials/Metamaterials

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Military

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Evident Thermoelectrics Announces Launch of World's-First Thermoelectric Product Based on Skutterudite Material Technology July 7th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project