Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Air Force Center of Excellence awarded in nanostructures and improved cognition

Michelle LaPlaca, a biomedical engineering associate professor, is developing tools and assessment methods to optimize critical cognitive processes of the modern warfighter.

Credit: Georgia Tech Photo: Rob Felt
Michelle LaPlaca, a biomedical engineering associate professor, is developing tools and assessment methods to optimize critical cognitive processes of the modern warfighter. Credit: Georgia Tech Photo: Rob Felt

Abstract:
The Georgia Institute of Technology has been awarded a U.S. Air Force Center of Excellence to design nanostructures for energy harvesting and adaptive materials, and to develop tools to optimize critical cognitive processes of the modern warfighter.

Air Force Center of Excellence awarded in nanostructures and improved cognition

Atlanta, GA | Posted on December 1st, 2009

The $10.5 million Center, known as the Bio-nano-enabled Inorganic/Organic Nanostructures and Improved Cognition (BIONIC) center, is being led by Vladimir Tsukruk and Kenneth Sandhage, professors in Georgia Tech's School of Materials Science and Engineering.

"Advanced materials is an area of importance for the Air Force since the landscape of materials science is rapidly changing and bio-nano-materials are classes of pervasive materials that exhibit unique capabilities and have the potential to address Air Force needs," explained Rajesh Naik, a scientist in the U.S. Air Force Research Laboratory (AFRL) Materials and Manufacturing Directorate. "In addition, improved cognition tools are required for assessing the cognitive ability of the warfighter as we ask for more from our human operators in the most demanding environments."

The BIONIC center includes a group of core members from six departments within the Georgia Tech Colleges of Sciences and Engineering, a researcher at The Ohio State University, and scientists and engineers at AFRL. Lockheed Martin Aeronautics Company is also an industrial collaborator.

Funding for the Center of Excellence is provided by the Materials and Manufacturing Directorate and Human Effectiveness Directorate of AFRL, the U.S. Air Force Office of Scientific Research and Georgia Tech. The initial award is for three years, with the possibility of an additional two-year extension.

"Georgia Tech was chosen to lead this Center of Excellence because of its investment in infrastructure development, including new facilities and instrumentation; its recruitment of high-caliber faculty members and students; and its emphasis in bio-nanotechnology and cognitive sciences," said Morley Stone, chief scientist of the Human Performance Wing of AFRL's Human Effectiveness Directorate.

There are three major research thrusts, called interdisciplinary research groups, within the BIONIC center. Each group contains several collaborators from AFRL's Materials and Manufacturing Directorate or Human Effectiveness Directorate.

For the first thrust, which is led by Sandhage, researchers are designing, fabricating, characterizing and modeling the performance of inorganic/organic nanocomposites for efficient, remote energy-harvesting devices, such as photovoltaics and batteries.

"The U.S. Air Force utilizes autonomous drones that they would like to operate for longer periods of time," explained co-director Sandhage, who holds the B. Mifflin Hood Professorship in the School of Materials Science and Engineering and an adjunct position in the School of Chemistry and Biochemistry. "To do that, they need a cost-effective energy source that can perform efficiently for extended periods of time, while also providing high pulses of power when needed."

Tsukruk is leading the second interdisciplinary research group, which is focused on designing, fabricating, characterizing and simulating the performance of inorganic/organic nanocomposites for tunable, adaptive materials.

"When these adaptive materials are exposed to heat or light or both, they will change their properties in ways that will be useful for sensing or morphing surfaces," said co-director Tsukruk, who also holds a joint appointment in Georgia Tech's School of Polymer, Textile and Fiber Engineering.

The third thrust is being led by Michelle LaPlaca, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. LaPlaca and her team plan to develop tools and assessment methods to optimize critical cognitive processes of the modern warfighter.

"U.S. Air Force analysts must remain attentive to computers and controls for hours at a time, so we aim to find a molecular signature of cognition that is sensitive to changes in stress levels and correlate these molecules with functional brain maps using magnetic resonance imaging techniques," said LaPlaca. "We want to learn about a warfighter's physiological response to different situations and use this information to optimize training and work effectiveness."

In addition to its research objectives, another goal for the Center of Excellence is to conduct stimulating collaborative research that will motivate students to consider working at AFRL.

"At Georgia Tech, we've had a history of sending outstanding alumni to work at AFRL, including three of our recent Ph.D. graduates. As students, they were able to collaborate with researchers at AFRL and spend extended periods of time at the AFRL facilities, which opened their eyes to AFRL's exciting opportunities and dynamic research atmosphere," said Sandhage.

Other core members of the Center include Regents' Professor Mostafa El-Sayed, professor Seth Marder and assistant professor Nils Kroger from the Georgia Tech School of Chemistry and Biochemistry; professor Bernard Kippelen from the Georgia Tech School of Electrical and Computer Engineering; Shella Keilholz, an assistant professor in the Coulter Department of Biomedical Engineering; Eric Schumacher, an assistant professor in the Georgia Tech School of Psychology; and Hamish Fraser, a professor in the Department of Materials Science and Engineering at The Ohio State University.

Researchers will be added to this core group as early as next year, when the Center begins awarding seed grants to Georgia Tech faculty members.

"The goal of this seed grant program is to establish new connections to talented Georgia Tech faculty members that can result in long-term relationships and fruitful collaborations with the U.S. Air Force," added Sandhage.

###

This material is based upon work supported by the U.S. Air Force under Award No. FA9550-09-1-0162. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the principal investigators and do not necessarily reflect the views of the U.S. Air Force.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.

Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 19,000 undergraduate and graduate students receive a focused, technologically based education.

For more information, please click here

Contacts:
Abby Vogel

404-385-3364

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Sensors

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

UNIST engineers octopus-inspired smart adhesive pads July 15th, 2016

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Military

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Energy

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Nanosystem and Digital Surf launch NanoMap Alpha: New surface imaging & metrology software based on Mountains® Technology July 14th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Solar/Photovoltaic

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Organic computers are coming: Scientists found a molecule that will help to make organic electronic devices July 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic