Home > Press > Air Force Center of Excellence awarded in nanostructures and improved cognition
![]() |
Michelle LaPlaca, a biomedical engineering associate professor, is developing tools and assessment methods to optimize critical cognitive processes of the modern warfighter. Credit: Georgia Tech Photo: Rob Felt |
Abstract:
The Georgia Institute of Technology has been awarded a U.S. Air Force Center of Excellence to design nanostructures for energy harvesting and adaptive materials, and to develop tools to optimize critical cognitive processes of the modern warfighter.
The $10.5 million Center, known as the Bio-nano-enabled Inorganic/Organic Nanostructures and Improved Cognition (BIONIC) center, is being led by Vladimir Tsukruk and Kenneth Sandhage, professors in Georgia Tech's School of Materials Science and Engineering.
"Advanced materials is an area of importance for the Air Force since the landscape of materials science is rapidly changing and bio-nano-materials are classes of pervasive materials that exhibit unique capabilities and have the potential to address Air Force needs," explained Rajesh Naik, a scientist in the U.S. Air Force Research Laboratory (AFRL) Materials and Manufacturing Directorate. "In addition, improved cognition tools are required for assessing the cognitive ability of the warfighter as we ask for more from our human operators in the most demanding environments."
The BIONIC center includes a group of core members from six departments within the Georgia Tech Colleges of Sciences and Engineering, a researcher at The Ohio State University, and scientists and engineers at AFRL. Lockheed Martin Aeronautics Company is also an industrial collaborator.
Funding for the Center of Excellence is provided by the Materials and Manufacturing Directorate and Human Effectiveness Directorate of AFRL, the U.S. Air Force Office of Scientific Research and Georgia Tech. The initial award is for three years, with the possibility of an additional two-year extension.
"Georgia Tech was chosen to lead this Center of Excellence because of its investment in infrastructure development, including new facilities and instrumentation; its recruitment of high-caliber faculty members and students; and its emphasis in bio-nanotechnology and cognitive sciences," said Morley Stone, chief scientist of the Human Performance Wing of AFRL's Human Effectiveness Directorate.
There are three major research thrusts, called interdisciplinary research groups, within the BIONIC center. Each group contains several collaborators from AFRL's Materials and Manufacturing Directorate or Human Effectiveness Directorate.
For the first thrust, which is led by Sandhage, researchers are designing, fabricating, characterizing and modeling the performance of inorganic/organic nanocomposites for efficient, remote energy-harvesting devices, such as photovoltaics and batteries.
"The U.S. Air Force utilizes autonomous drones that they would like to operate for longer periods of time," explained co-director Sandhage, who holds the B. Mifflin Hood Professorship in the School of Materials Science and Engineering and an adjunct position in the School of Chemistry and Biochemistry. "To do that, they need a cost-effective energy source that can perform efficiently for extended periods of time, while also providing high pulses of power when needed."
Tsukruk is leading the second interdisciplinary research group, which is focused on designing, fabricating, characterizing and simulating the performance of inorganic/organic nanocomposites for tunable, adaptive materials.
"When these adaptive materials are exposed to heat or light or both, they will change their properties in ways that will be useful for sensing or morphing surfaces," said co-director Tsukruk, who also holds a joint appointment in Georgia Tech's School of Polymer, Textile and Fiber Engineering.
The third thrust is being led by Michelle LaPlaca, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. LaPlaca and her team plan to develop tools and assessment methods to optimize critical cognitive processes of the modern warfighter.
"U.S. Air Force analysts must remain attentive to computers and controls for hours at a time, so we aim to find a molecular signature of cognition that is sensitive to changes in stress levels and correlate these molecules with functional brain maps using magnetic resonance imaging techniques," said LaPlaca. "We want to learn about a warfighter's physiological response to different situations and use this information to optimize training and work effectiveness."
In addition to its research objectives, another goal for the Center of Excellence is to conduct stimulating collaborative research that will motivate students to consider working at AFRL.
"At Georgia Tech, we've had a history of sending outstanding alumni to work at AFRL, including three of our recent Ph.D. graduates. As students, they were able to collaborate with researchers at AFRL and spend extended periods of time at the AFRL facilities, which opened their eyes to AFRL's exciting opportunities and dynamic research atmosphere," said Sandhage.
Other core members of the Center include Regents' Professor Mostafa El-Sayed, professor Seth Marder and assistant professor Nils Kroger from the Georgia Tech School of Chemistry and Biochemistry; professor Bernard Kippelen from the Georgia Tech School of Electrical and Computer Engineering; Shella Keilholz, an assistant professor in the Coulter Department of Biomedical Engineering; Eric Schumacher, an assistant professor in the Georgia Tech School of Psychology; and Hamish Fraser, a professor in the Department of Materials Science and Engineering at The Ohio State University.
Researchers will be added to this core group as early as next year, when the Center begins awarding seed grants to Georgia Tech faculty members.
"The goal of this seed grant program is to establish new connections to talented Georgia Tech faculty members that can result in long-term relationships and fruitful collaborations with the U.S. Air Force," added Sandhage.
###
This material is based upon work supported by the U.S. Air Force under Award No. FA9550-09-1-0162. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the principal investigators and do not necessarily reflect the views of the U.S. Air Force.
####
About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.
Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 19,000 undergraduate and graduate students receive a focused, technologically based education.
For more information, please click here
Contacts:
Abby Vogel
404-385-3364
Copyright © Eurekalert
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Govt.-Legislation/Regulation/Funding/Policy
UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023
Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023
Sensors
Development of bio-friendly transparent temperature sensor technology that precisely measures temperature changes by light January 6th, 2023
Materials/Metamaterials
Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022
How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022
Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022
Announcements
Temperature-sensing building material changes color to save energy January 27th, 2023
Military
Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023
Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022
Energy
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Polymer p-doping improves perovskite solar cell stability January 20th, 2023
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023
Correlated rattling atomic chains reduce thermal conductivity of materials January 20th, 2023
Lithium-sulfur batteries are one step closer to powering the future January 6th, 2023
Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022
Solar/Photovoltaic
Stability of perovskite solar cells reaches next milestone January 27th, 2023
New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022
Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |