Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Innovation puts next-generation solar cells on the horizon

Abstract:
In a world first, a Monash University-led international research team has developed an innovative way to boost the output of the next generation of solar cells.

Innovation puts next-generation solar cells on the horizon

Australia | Posted on December 1st, 2009

Scientists at Monash University, in collaboration with colleagues from the universities of Wollongong and Ulm in Germany, have produced tandem dye-sensitised solar cells with a three-fold increase in energy conversion efficiency compared with previously reported tandem dye-sensitised solar cells.

Lead researcher Dr Udo Bach, from Monash University, said the breakthrough had the potential to increase the energy generation performance of the cells and make them a viable and competitive alternative to traditional silicon solar cells.

Dr Bach said the key was the discovery of a new, more efficient type of dye that made the operation of inverse dye-sensitised solar cells much more efficient.

When the research team combined two types of dye-sensitised solar cell -- one inverse and the other classic -- into a simple stack, they were able to produce for the first time a tandem solar cell that exceeded the efficiency of its individual components.

"The tandem approach -- stacking many solar cells together -- has been successfully used in conventional photovoltaic devices to maximise energy generation, but there have been obstacles in doing this with dye-sensitised cells because there has not been a method for creating an inverse system that would allow dye molecules to efficiently pass on positive charges to a semiconductor when illuminated with light," Dr Bach said.

"Inverse dye-sensitised solar cells are the key to producing dye-sensitised tandem solar cells, but the challenge has been to find a way to make them perform more effectively. By creating a way of making inverse dye-sensitised solar cells operate very efficiently we have opened the way for dye-sensitised tandem solar cells to become a commercial reality."

Although dye-sensitised solar cells have been the focus of research for a number of years because they can be fabricated with relative simplicity and cost-efficiency, their effectiveness has not been on par with high-performance silicon solar cells.

Dr Bach said the breakthrough, which is detailed in a paper published in Nature Materials, was an important milestone in the ongoing development of viable and efficient solar cell technology.

"While this new tandem technology is still in its early infancy, it represents an important first step towards the development of the next generation of solar cells that can be produced at low cost and with energy efficient production methods," he said.

"With this innovation we are one step closer to the creation of a cost-efficient and carbon-neutral energy source."

####

About Monash University
Established in Melbourne in 1958, Monash is Australia's most internationalised university. It has eight campuses including one in Malaysia and one in South Africa, and a centre in Prato, Italy. An energetic and dynamic university, Monash is committed to quality education and research.

Through collaborative research, student exchange programs and an ever-growing Alumni network, Monash has links with people and organisations throughout Asia, Europe, the Americas, Africa and the Middle East.

For more information, please click here

Contacts:
Dr Udo Bach
+61 3 9905 5343

Jane Castles
Monash University Media and Communications
+61 3 9903 4842
+61417 568 781

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Environment

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project