Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Innovation puts next-generation solar cells on the horizon

Abstract:
In a world first, a Monash University-led international research team has developed an innovative way to boost the output of the next generation of solar cells.

Innovation puts next-generation solar cells on the horizon

Australia | Posted on December 1st, 2009

Scientists at Monash University, in collaboration with colleagues from the universities of Wollongong and Ulm in Germany, have produced tandem dye-sensitised solar cells with a three-fold increase in energy conversion efficiency compared with previously reported tandem dye-sensitised solar cells.

Lead researcher Dr Udo Bach, from Monash University, said the breakthrough had the potential to increase the energy generation performance of the cells and make them a viable and competitive alternative to traditional silicon solar cells.

Dr Bach said the key was the discovery of a new, more efficient type of dye that made the operation of inverse dye-sensitised solar cells much more efficient.

When the research team combined two types of dye-sensitised solar cell -- one inverse and the other classic -- into a simple stack, they were able to produce for the first time a tandem solar cell that exceeded the efficiency of its individual components.

"The tandem approach -- stacking many solar cells together -- has been successfully used in conventional photovoltaic devices to maximise energy generation, but there have been obstacles in doing this with dye-sensitised cells because there has not been a method for creating an inverse system that would allow dye molecules to efficiently pass on positive charges to a semiconductor when illuminated with light," Dr Bach said.

"Inverse dye-sensitised solar cells are the key to producing dye-sensitised tandem solar cells, but the challenge has been to find a way to make them perform more effectively. By creating a way of making inverse dye-sensitised solar cells operate very efficiently we have opened the way for dye-sensitised tandem solar cells to become a commercial reality."

Although dye-sensitised solar cells have been the focus of research for a number of years because they can be fabricated with relative simplicity and cost-efficiency, their effectiveness has not been on par with high-performance silicon solar cells.

Dr Bach said the breakthrough, which is detailed in a paper published in Nature Materials, was an important milestone in the ongoing development of viable and efficient solar cell technology.

"While this new tandem technology is still in its early infancy, it represents an important first step towards the development of the next generation of solar cells that can be produced at low cost and with energy efficient production methods," he said.

"With this innovation we are one step closer to the creation of a cost-efficient and carbon-neutral energy source."

####

About Monash University
Established in Melbourne in 1958, Monash is Australia's most internationalised university. It has eight campuses including one in Malaysia and one in South Africa, and a centre in Prato, Italy. An energetic and dynamic university, Monash is committed to quality education and research.

Through collaborative research, student exchange programs and an ever-growing Alumni network, Monash has links with people and organisations throughout Asia, Europe, the Americas, Africa and the Middle East.

For more information, please click here

Contacts:
Dr Udo Bach
+61 3 9905 5343

Jane Castles
Monash University Media and Communications
+61 3 9903 4842
+61417 568 781

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Possible Futures

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

Announcements

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Environment

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic