Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Innovation puts next-generation solar cells on the horizon

Abstract:
In a world first, a Monash University-led international research team has developed an innovative way to boost the output of the next generation of solar cells.

Innovation puts next-generation solar cells on the horizon

Australia | Posted on December 1st, 2009

Scientists at Monash University, in collaboration with colleagues from the universities of Wollongong and Ulm in Germany, have produced tandem dye-sensitised solar cells with a three-fold increase in energy conversion efficiency compared with previously reported tandem dye-sensitised solar cells.

Lead researcher Dr Udo Bach, from Monash University, said the breakthrough had the potential to increase the energy generation performance of the cells and make them a viable and competitive alternative to traditional silicon solar cells.

Dr Bach said the key was the discovery of a new, more efficient type of dye that made the operation of inverse dye-sensitised solar cells much more efficient.

When the research team combined two types of dye-sensitised solar cell -- one inverse and the other classic -- into a simple stack, they were able to produce for the first time a tandem solar cell that exceeded the efficiency of its individual components.

"The tandem approach -- stacking many solar cells together -- has been successfully used in conventional photovoltaic devices to maximise energy generation, but there have been obstacles in doing this with dye-sensitised cells because there has not been a method for creating an inverse system that would allow dye molecules to efficiently pass on positive charges to a semiconductor when illuminated with light," Dr Bach said.

"Inverse dye-sensitised solar cells are the key to producing dye-sensitised tandem solar cells, but the challenge has been to find a way to make them perform more effectively. By creating a way of making inverse dye-sensitised solar cells operate very efficiently we have opened the way for dye-sensitised tandem solar cells to become a commercial reality."

Although dye-sensitised solar cells have been the focus of research for a number of years because they can be fabricated with relative simplicity and cost-efficiency, their effectiveness has not been on par with high-performance silicon solar cells.

Dr Bach said the breakthrough, which is detailed in a paper published in Nature Materials, was an important milestone in the ongoing development of viable and efficient solar cell technology.

"While this new tandem technology is still in its early infancy, it represents an important first step towards the development of the next generation of solar cells that can be produced at low cost and with energy efficient production methods," he said.

"With this innovation we are one step closer to the creation of a cost-efficient and carbon-neutral energy source."

####

About Monash University
Established in Melbourne in 1958, Monash is Australia's most internationalised university. It has eight campuses including one in Malaysia and one in South Africa, and a centre in Prato, Italy. An energetic and dynamic university, Monash is committed to quality education and research.

Through collaborative research, student exchange programs and an ever-growing Alumni network, Monash has links with people and organisations throughout Asia, Europe, the Americas, Africa and the Middle East.

For more information, please click here

Contacts:
Dr Udo Bach
+61 3 9905 5343

Jane Castles
Monash University Media and Communications
+61 3 9903 4842
+61417 568 781

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Energy

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Alliances/Partnerships/Distributorships

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Solar/Photovoltaic

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE