Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > All Decked Out

Abstract:
Networks of chitin filaments are integral components of diatom silica shells

All Decked Out

Posted on December 1st, 2009

A whole microcosm of various bizarrely shaped life forms opens up when you look at diatoms, the primary component of ocean plankton, under a microscope. The regularly structured silica shells of these tiny individual life forms have attracted scientists because they are particularly interesting examples of natural hybrid materials and also demonstrate unusual mechanistic and optical properties. The mechanisms of the underlying biomineralization process are not yet fully understood, but the silica shells often provide inspiration for the synthesis of man-made nanostructures. Researchers at TU Dresden and the Max Planck Institute the Chemical Physics of Solids in Dresden have now identified another component of the diatom cell walls. As the team led by Eike Brunner reports in the journal Angewandte Chemie, they found an organic network of crosslinked chitin filaments.

Chitin is a long molecular chain of sugar building blocks, a polysaccharide. It is the second most widespread polysaccharide on Earth after cellulose. In combination with calcium carbonate (lime) and proteins, it forms the shells of insects and crabs. "Chitin plays an important role in the biomineralization of such calcium carbonate based shells and structures," explains Brunner. "We have now been the first to demonstrate that the silica cell walls of the diatom Thalassiosira pseudonana also contain a chitin-based network."

The researchers dissolved the silica components of diatom shells with a fluoride-containing solution. What remained behind appears under a scanning electron microscope as a delicate, net-like scaffolding. This network resembles the cell wall in form and size and consists of crosslinked fibers with an average diameter of about 25 nm. Spectroscopic examinations show that the fibers contain chitin and other, previously unknown biomolecules.

"Our results suggest that the chitin-based network structure serves as a supporting scaffold for silica deposition, while the other biomolecules actively influence it," states Brunner. "This mechanism is thus analogous to calcium carbonate biomineralization. In addition, these networks may also mechanically stabilize the cell walls."

Author: Eike Brunner, TU Dresden (Germany), analyt.chm.tu-dresden.de/

Title: Chitin-Based Organic Networks—An Integral Part of Cell Wall Biosilica in the Diatom Thalassiosira pseudonana

Angewandte Chemie International Edition, doi: 10.1002/anie.200905028

####

For more information, please click here

Contacts:
Editorial office:


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Entanglement: Chaos - Researchers at UCSB blur the line between classical and quantum physics by connecting chaos and entanglement July 14th, 2016

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic