Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > All Decked Out

Abstract:
Networks of chitin filaments are integral components of diatom silica shells

All Decked Out

Posted on December 1st, 2009

A whole microcosm of various bizarrely shaped life forms opens up when you look at diatoms, the primary component of ocean plankton, under a microscope. The regularly structured silica shells of these tiny individual life forms have attracted scientists because they are particularly interesting examples of natural hybrid materials and also demonstrate unusual mechanistic and optical properties. The mechanisms of the underlying biomineralization process are not yet fully understood, but the silica shells often provide inspiration for the synthesis of man-made nanostructures. Researchers at TU Dresden and the Max Planck Institute the Chemical Physics of Solids in Dresden have now identified another component of the diatom cell walls. As the team led by Eike Brunner reports in the journal Angewandte Chemie, they found an organic network of crosslinked chitin filaments.

Chitin is a long molecular chain of sugar building blocks, a polysaccharide. It is the second most widespread polysaccharide on Earth after cellulose. In combination with calcium carbonate (lime) and proteins, it forms the shells of insects and crabs. "Chitin plays an important role in the biomineralization of such calcium carbonate based shells and structures," explains Brunner. "We have now been the first to demonstrate that the silica cell walls of the diatom Thalassiosira pseudonana also contain a chitin-based network."

The researchers dissolved the silica components of diatom shells with a fluoride-containing solution. What remained behind appears under a scanning electron microscope as a delicate, net-like scaffolding. This network resembles the cell wall in form and size and consists of crosslinked fibers with an average diameter of about 25 nm. Spectroscopic examinations show that the fibers contain chitin and other, previously unknown biomolecules.

"Our results suggest that the chitin-based network structure serves as a supporting scaffold for silica deposition, while the other biomolecules actively influence it," states Brunner. "This mechanism is thus analogous to calcium carbonate biomineralization. In addition, these networks may also mechanically stabilize the cell walls."

Author: Eike Brunner, TU Dresden (Germany), analyt.chm.tu-dresden.de/

Title: Chitin-Based Organic Networks—An Integral Part of Cell Wall Biosilica in the Diatom Thalassiosira pseudonana

Angewandte Chemie International Edition, doi: 10.1002/anie.200905028

####

For more information, please click here

Contacts:
Editorial office:


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Chemistry

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Discoveries

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE