Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne "homegrown" hybrid solar cell aims for low-cost power

This computer-generated image shows nanotubes, 10,000 times smaller than the width of a human hair, which comprise a new technique developed at Argonne for "growing" solar cells. 

Image courtesy Seth Darling (of the Center for Nanoscale Materials) and Argonne National Laboratory.
This computer-generated image shows nanotubes, 10,000 times smaller than the width of a human hair, which comprise a new technique developed at Argonne for "growing" solar cells. Image courtesy Seth Darling (of the Center for Nanoscale Materials) and Argonne National Laboratory.

Abstract:
Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have refined a technique to manufacture solar cells by creating tubes of semiconducting material and then "growing" polymers directly inside them. The method has the potential to be significantly cheaper than the process used to make today's commercial solar cells.

Argonne "homegrown" hybrid solar cell aims for low-cost power

Lemont, IL | Posted on December 1st, 2009

Because the production costs of today's generation of solar cells prevent them from competing economically with fossil fuels, Argonne researchers are working to re-imagine the solar cell's basic design. Most current solar cells use crystalline silicon or cadmium telluride, but growing a high-purity crystal is energy- and labor-intensive, making the cells expensive.

The next generation, called hybrid solar cells, uses a blend of cheaper organic and inorganic materials. To combine these materials effectively, Argonne researchers created a new technique to grow organic polymers directly inside inorganic nanotubes.

At its most basic level, solar cell technology relies on a series of processes initiated when photons, or particles of light, strike semiconducting material. When a photon hits the cell, it excites one electron out of its initial state, leaving behind a "hole" of positive charge.

Hybrid solar cells contain two separate types of semiconducting material: one conducts electrons, the other holes. At the junction between the two semiconductors, the electron-hole pair gets pulled apart, creating a current.

In the study, Argonne nanoscientist Seth Darling and colleagues at Argonne and the University of Chicago had to rethink the geometry of the two materials. If the two semiconductors are placed too far apart, the electron-hole pair will die in transit. However, if they're packed too closely, the separated charges won't make it out of the cell.

In designing an alternative, scientists paired an electron-donating conjugated polymer with the electron acceptor titanium dioxide (TiO2).

Titanium dioxide readily forms miniscule tubes just tens of nanometers across—10,000 times smaller than a human hair. Rows of tiny, uniform nanotubes sprout across a film of titanium that has been submerged in an electrochemical bath.

The next step required the researchers to fill the nanotubes with the organic polymer—a frustrating process.

"Filling nanotubes with polymer is like trying to stuff wet spaghetti into a table full of tiny holes," Darling said. "The polymer ends up bending and twisting, which leads to inefficiencies both because it traps pockets of air as it goes and because twisted polymers don't conduct charges as well.

"In addition, this polymer doesn't like titanium dioxide," Darling added. "So it pulls away from the interface whenever it can."

Trying to sidestep this problem, the team hit on the idea of growing the polymer directly inside the tubes. They filled the tubes with a polymer precursor, turned on ultraviolet light, and let the polymers grow within the tubes.

Grown this way, the polymer doesn't shy away from the TiO2. In fact, tests suggest the two materials actually mingle at the molecular level; together they are able to capture light at wavelengths inaccessible to either of the two materials alone. This "homegrown" method is potentially much less expensive than the energy-intensive process that produces the silicon crystals used in today's solar cells.

These devices dramatically outperform those fabricated by filling the nanotubes with pre-grown polymer, producing about 10 times more electricity from absorbed sunlight. The solar cells produced by this technique, however, do not currently harness as much of the available energy from sunlight as silicon cells can. Darling hopes that further experiments will improve the cells' efficiency.

The paper, entitled "Improved Hybrid Solar Cells via in situ UV Polymerization", was published in the journal Small and is available online.

Funding for this research was provided by the Department of Energy's Office of Basic Energy Sciences and by the NSF-Materials Research Science and Engineering Center at the University of Chicago.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Angela Hardin
630/252-5501

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Announcements

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Nanotech Security Corp. to Acquire Fortress Optical Features Ltd., a Leading Producer of Banknote Security Features August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Energy

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

Solar/Photovoltaic

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE