Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > New light on Earth’s energy crisis

November 24th, 2009

New light on Earth’s energy crisis

Abstract:
Another exciting breakthrough is an electronic device that uses spinach to convert light into electrical charge, developed by US researchers. Zhang Shuguang and research collaborators at the Massachusetts Institute of Technology have combined a protein complex extracted from spinach chloroplasts, with organic semiconductors, to make a solar cell that could be incorporated with solid state electronics. "Nature has been doing this for billions of years," Zhang says, "but this is the first time we've been able to harness it."

With nanotechnology and the minimalist idea of ‘less is more', thinner and lighter panels are making way to a more efficient design of a solar panel.

Zhang's team artificially stabilised the protein complex at the heart of their system, consisting of 14 protein subunits and hundreds of chlorophyll molecules, using synthetic peptides to bind small amounts of water to it, within a sealed unit.

Photons then ‘excite' coupled pairs of electrons within chlorophyll, causing an electron to transfer to a nearby receptor molecule. Plants use this transfer to complete photosynthesis. Zhang has fostered this principle into his device, feeding electrons into organic semiconductors aligned on top of a layer of glass.

Zhang encountered difficulties with the use of organic materials in system. The protein complex is kept stable for about three weeks by the peptides, and the cells convert only twelve per cent of light to electrical charge. The solution seems to point towards layering numerous cells atop each other, so that a certain amount of light can pass through.

Interestingly enough, in New Zealand other researchers are on a similar wavelength. Solar cell technology developed by Massey University's Nanomaterials Research Centre will enable New Zealanders to create electricity from sunlight 90 per cent cheaper than the current silicon-based, photo-electric solar cells.

Source:
universityobserver.ie

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Chemistry

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Possible Futures

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project