Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Water Droplets Direct Self-Assembly Process In Thin-Film Materials

Abstract:
You can think of it as origami - very high-tech origami.

Water Droplets Direct Self-Assembly Process In Thin-Film Materials

Champaign, IL | Posted on November 24th, 2009

Researchers at the University of Illinois have developed a technique for fabricating three-dimensional, single-crystalline silicon structures from thin films by coupling photolithography and a self-folding process driven by capillary interactions.

The films, only a few microns thick, offer mechanical bendability that is not possible with thicker pieces of the same material.

"This is a completely different approach to making three-dimensional structures," said Ralph G. Nuzzo, the G. L. Clark Professor of Chemistry at Illinois. "We are opening a new window into what can be done in self-assembly processes."

Nuzzo is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted on the journal's Early Edition Web site the week of November 23.

As a demonstration of the new capillary-driven, self-assembly process, Nuzzo and colleagues constructed spherical and cylindrical shaped silicon solar cells and evaluated their performance.

The researchers also developed a predictive model that takes into account the type of thin film to be used, the film's mechanical properties and the desired structural shape.

"The model identifies the critical conditions for self-folding of different geometric shapes," said mechanical science and engineering professor K. Jimmy Hsia. "Using the model, we can improve the folding process, select the best material to achieve certain goals, and predict how the structure will behave for a given material, thickness and shape."

To fabricate their free-standing solar cells, the researchers began by using photolithography to define the desired geometric shape on a thin film of single-crystalline silicon, which was mounted on a thicker, insulated silicon wafer. Next, they removed the exposed silicon with etchant, undercut the remaining silicon foil with acid, and released the foil from the wafer. Then they placed a tiny drop of water at the center of the foil pattern.

As the water evaporated, capillary forces pulled the edges of the foil together, causing the foil to wrap around the water droplet.

To retain the desired shape after the water had fully evaporated, the researchers placed a tiny piece of glass, coated with an adhesive, at the center of the foil pattern. The glass "froze" the three-dimensional structure in place, once it had reached the desired folded state.

"The resulting photovoltaic structures, not yet optimized for electrical performance, offer a promising approach for efficiently harvesting solar energy with thin films," said Jennifer A. Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory.

Unlike conventional, flat solar cells, the curved, three-dimensional structures also serve as passive tracking optics by absorbing light from nearly all directions.

"We can look forward from this benchmark demonstration to photovoltaic structures made from thin films that behave as though they are optically dense, and much more efficient," Lewis said.

The new self-assembly process can be applied to a variety of thin-film materials, not just silicon, the researchers noted in their paper.

With Nuzzo, Hsia and Lewis, co-authors of the paper are graduate students Xiaoying Guo and Huan Li, and postdoctoral researchers Bok Yeop Ahn and Eric B. Douss.

Hsia is associate dean of the Graduate College and is affiliated with the university's Micro and Nanotechnology Laboratory.

Lewis is affiliated with the department of chemical and biomolecular engineering and the Micro and Nanotechnology Laboratory.

Nuzzo is affiliated with the Institute for Genomic Biology, the Micro and Nanotechnology Laboratory, the materials science and engineering department, and the Frederick Seitz Materials Research Laboratory.

The U.S. Defense Advanced Research Projects Agency, the Department of Energy and the National Science Foundation funded the work.

####

About University of Illinois
Since its founding in 1867, the University of Illinois at Urbana-Champaign has earned a reputation as a world-class leader in research, teaching, and public engagement.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Self Assembly

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic