Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Maksymovych delves into 'completely different' ferroelectrics

Petro Maksymovych
Petro Maksymovych

Abstract:
Maksymovych and his colleagues at DOE's Oak Ridge National Laboratory have turned their attention to ferroelectric oxides, which are unique in that their structure is correlated in such as way as to produce spontaneous polarization that can be reversed by applying electric field.

Maksymovych delves into 'completely different' ferroelectrics

Oak Ridge, TN | Posted on November 23rd, 2009

Leaving his Ukraine roots destined for the United States to pursue a scientific career, Petro Maksymovych had little idea of the abundance of possibilities he would encounter.

"One of the things I wanted was to do something completely different than what I did as a graduate student," he says.

He is succeeding. Maksymovych and his colleagues at DOE's Oak Ridge National Laboratory have turned their attention to ferroelectric oxides, which are unique in that their structure is correlated in such as way as to produce spontaneous polarization that can be reversed by applying electric field. The stability and non-volatility of spontaneous polarization have made ferroelectrics ubiqitous in portable memory devices such as such as RFID cards in the form of FeRAM (Ferro-electric Random Access Memory.) On the fundamental side, ferroelectricity is a key component of multiferroic behavior, where spontaneous polarization is coupled to strain and magnetization.

It was hypothesized years ago that spontaneous polarization can control the electronic conductance of the ferroelectric oxide. This archetypal property would enable ultra-high density information storage in nanoscale ferroelectric materials, and "it is also a stepping stone to a broad range of novel phenomena arising from coupling of soft-phonon order parameters to electron transport," Maksymovych says. The problem, he says, is that these materials are practically insulators—"you can't run current across them. One way out is to shrink them down—but then you lose the polarization property and with it memory functionality."

Maksymovych and his colleagues working in ORNL's Center for Nanophase Materials Sciences have found a way around that: "You don't necessarily need to shrink it down. All you have to do is [use] a somewhat leakier medium. That will give you access to the interface, where ferroelectricity will manifest itself the most."

"These ‘leaky' thin films are usually avoided due to their interference with other measurements, like polarization. To avoid the problem, the researchers have assumed a new approach based entirely on scanning probe microscopy.

"Macroscopic measurements have little means to differentiate intrinsic and extrinsic behaviors. Our approach, by virtue of its low-dimensional design, lets us identify the intrinsic properties and resolve their variation across the surface. If we so desire, we can subsequently go and find defects in the material to see what influence they have on the intrinsic properties, or whether they dominate them," Maksymovych says.

The new approach is anticipated to affect much more than electronic applications. "We are very excited by this very first step. We are confident that the intriguing atomistic and electronic dynamics of multiferroics will bring in a new dimension in the physics of these materials with future relevance to both energy and information," Maksymovych says.

He earned a B.S. in chemistry from the Kiev Tara Shevchenko University in Ukraine and graduated from the University of Pittsburgh with a doctorate in physical chemistry. He arrived at ORNL in 2007 as a Eugene P. Wigner Fellow.

Since arriving at ORNL, Maksymovych has already authored or co-authored a number of papers in major peer-reviewed journals. In addition to oxide materials, he is currently working on a new intiative at the Center for Nanophase Materials Sciences, focused on chemical dynamics and electronic properties of single molecules and molecular assemblies. Maksymovych still finds time to dabble in activities outside of work, such as playing with the latest computer technology going hiking, attending underground musical theaters and learning how to play guitar, "a major affection."

####

About Oak Ridge National Laboratory
ORNL is a multiprogram science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC. Scientists and engineers at ORNL conduct basic and applied research and development to create scientific knowledge and technological solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security.

ORNL also performs other work for the Department of Energy, including isotope production, information management, and technical program management, and provides research and technical assistance to other organizations. The laboratory is a program of DOE's Oak Ridge Field Office.

For more information, please click here

Contacts:
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
865.574.4160

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project