Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cell biology on nanoporous UltraSMŽ membranes

Abstract:
Our pure silicon nanoporous UltraSMŽ membranes are not only useful for electron microscopy, but also cell biology. In many studies of cell biology, one is interested in understanding how two cell populations interact or affect one another.

Cell biology on nanoporous UltraSMŽ membranes

Rochester, NY | Posted on November 21st, 2009

This is important in studies of developmental biology, stem cell research as well as tissue and artifical organ engineering. Conventional materials used for co-culture studies consist of thick polymeric membranes that can trap low abundance short-distance signaling molecules that cells use to communicate. SiMPore's nanoporous nanometer-thick membrane is ideal for studying two cell populations that are physically separated, but closely enough to easily communicate. Physical separation is important in many cellular studies where one cell type is harvested and isolated after co-culture. The figure above shows this ideal co-culture environment.

To demonstrate the thinness and transparency of our UltraSMŽ membranes, we plated human white blood cells on the top and bottom surface of the membrane. In imaging the cells, we focused from beneath the membrane, to membrane height and then above the membrane. Unlike traditional co-culture membranes, the 15 nm thick UltraSMŽ membrane is invisible and does not degrade the image quality of the cells on the top.

SiMPore and our academic partners are currently using UltraSMŽ membranes in additional formats to study everything from cell-cell communication to investigating improved drug permeability assays and even developing tissue engineering platforms. If you would like to learn more or work with us towards developing a better co-culture platform, feel free to contact me:

####

About SiMPore
SiMPore is a nanotechnology materials company based in Rochester, NY developing and commercializing products for materials and life sciences communities.

For more information, please click here

Contacts:
SiMPore Inc.
150 Lucius Gordon Dr.
Suite 100
West Henrietta, NY 14586

888-249-2935

Copyright © SiMPore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Products

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

Graphenea increases capacity, reduces prices January 25th, 2016

Nanomedicine

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nanobiotechnology

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic