Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Asylum Research Announces Grant Offering for its Band Excitation Technique

Operational principle of the BE method in SPM.  The excitation signal is digitally synthesized to have a predefined amplitude and phase in the given frequency window.  The cantilever response is detected and Fourier transformed (FFT) at each pixel in an image.  The ratio of the fast FFT of response and excitation signals yields the cantilever response (transfer function).  Fitting the response to the simple harmonic oscillator yields amplitude, resonance frequency, and Q-factor that are plotted to yield 2D images, or used as feedback signals. Reprinted with permission (Nanotechnology 18 (43) (2007)).
Operational principle of the BE method in SPM. The excitation signal is digitally synthesized to have a predefined amplitude and phase in the given frequency window. The cantilever response is detected and Fourier transformed (FFT) at each pixel in an image. The ratio of the fast FFT of response and excitation signals yields the cantilever response (transfer function). Fitting the response to the simple harmonic oscillator yields amplitude, resonance frequency, and Q-factor that are plotted to yield 2D images, or used as feedback signals. Reprinted with permission (Nanotechnology 18 (43) (2007)).

Abstract:
Asylum Research, the technology leader in Scanning Probe and Atomic Force Microscopy (SPM/AFM), has announced a new grant program for early adopters to explore the capabilities and applications of the unique new Band Excitation technique. Existing or new Asylum AFM users are encouraged to apply for grants valued at up to $50,000 USD. Additional information on grant submission content and procedures is provided at www.asylumresearch.com/grants.

Asylum Research Announces Grant Offering for its Band Excitation Technique

Santa Barbara, CA | Posted on November 20th, 2009

"The R&D 100 Award-winning Band Excitation (BE) technique has shown great promise in mapping the conservative interactions, nonlinearities, and energy dissipation of materials on the nanoscale," said Roger Proksch, Asylum Research President and grants lead. "Stephen Jesse and Sergei Kalinin at Oak Ridge National Laboratory (ORNL), collaborating with Asylum Research, have developed the BE system where a synthesized excitation signal probes the response of a cantilever at multiple frequencies simultaneously. This method is a fast and sensitive technique which may be useful for understanding and mitigating energy losses in magnetic, electrical, and electromechanical processes and technologies. We encourage new and existing AFM users to apply for the BE grants and to work closely with the Asylum team to blaze new trails with this exciting new technique."

Suggested grant topics include:

• Energy dissipation in materials.
• Contact resonance measurements for materials properties contrast and quantification.
• Electromechanical properties of materials, including piezo- and ferroelectrics.
• Applications of BE to solar materials - photovoltaics and energetic materials.
• BE methodologies applied to other active probes, such as localized thermal analysis.
• Biological materials including mechanical properties and recognition mechanisms.
• Advanced methodologies for data reduction and analysis.
• Probing nonlinear tip-sample interactions.
• Other nanoscale measurements that can benefit from rapid multiple frequency measurements.

"Classical scanning probe microscopies are based on the excitation and detection of single or, recently, dual frequencies. In doing so, the information on real tip-surface interactions manifested in the fine details of the resonance curve shape is not measured. Implementation of BE on multiple ambient and UHV systems at ORNL has allowed us to achieve several technical breakthroughs in mapping structure, magnetic and electrical dissipation, and electromechanical activity in ferroelectric, multiferroic, and biological systems in ambient, liquid, and vacuum environments," commented Sergei Kalinin.

Added Stephen Jesse, "Classical SPM offers basically a gray-scale image of cantilever dynamics at a single frequency. Band excitation opens a new and colorful multi-frequency view of the nanoworld that we can already explore, but are just starting to appreciate."

####

About Asylum Research
Asylum Research is the technology leader in atomic force and scanning probe microscopy (AFM/SPM) for both materials and bioscience applications. Founded in 1999, we are an employee owned company dedicated to innovative instrumentation for nanoscience and nanotechnology, with over 250 years combined AFM/SPM experience among our staff. Our instruments are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more. Asylum’s product line offers imaging and measurement capabilities for a wide range of samples, including advanced techniques such as electrical characterization (CAFM, KFM, EFM), high voltage piezoresponse force microscopy (PFM), thermal analysis, quantitative nanoindenting, and a wide range of environmental accessories and application-ready modules.

Asylum’s MFP-3D™ set the standard for AFM technology, with unprecedented precision and flexibility. The MFP-3D is the first AFM with true independent piezo positioning in all three axes, combined with low noise closed-loop feedback sensor technology. The MFP-3D offers both top and bottom sample viewing and easy integration with most commercially-available inverted optical microscopes.

Asylum’s new Cypher™ AFM is the world’s first new small sample AFM/SPM in over a decade, and sets the new standard as the world’s highest resolution AFM. Cypher provides low-drift closed loop atomic resolution for the most accurate images and measurements possible today, rapid AC imaging with small cantilevers, Spot-On™ automated laser alignment for easy setup, integrated thermal, acoustic and vibration control, and broad support for all major AFM/SPM scanning modes and capabilities.

Asylum Research offers the lowest cost of ownership of any AFM company. Ask us about our industry-best 2-year warranty, our legendary product and applications support, and our exclusive 6-month money-back satisfaction guarantee. We are dedicated to providing the most technically advanced AFMs for researchers who want to take their experiments to the next level. Asylum Research also distributes third party cantilevers from Olympus, Nanoworld/Nanosensors, and our own MFM and iDrive™ tips.

For more information, please click here

Contacts:
Terry Mehr, Director of Marketing Communications, or Monteith Heaton, EVP, Marketing/Business Development, Asylum Research, 6310 Hollister Avenue, Santa Barbara, CA 93117,
805-696-6466x224/227

Copyright © Asylum Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project