Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > When It Comes to Drug Delivery, Size Matters

Abstract:
One of the great promises of nanotechnologies lies in its ability to create drug-containing nanoparticles decorated with targeting molecules that recognize and bind to cancer cells, providing drug delivery only at the site of the targeted cells. Such site-specific drug delivery would not only boost the cancer-killing activity of a drug payload but also reduce potential side effects by greatly restricting or even eliminating the amount of drug reaching healthy tissue.

When It Comes to Drug Delivery, Size Matters

Bethesda, MD | Posted on November 18th, 2009

It turns out, though, that not all targeting agent-nanoparticle combinations are able to reach and enter their targets with equal effectiveness. To help bring some rationality to the process of designing targeted drug delivery agents, K. Dane Wittrup, Ph.D., and graduate student Micheal Schmidt of the Massachusetts Institute of Technology have developed a mathematical model that predicts the magnitude and specificity of tumor uptake of drug delivery vehicles ranging in size from small peptides to large liposomes. This work was published in the journal Molecular Cancer Therapeutics.

The model developed by the Schmidt and Wittrup, who is a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence, accounts for the size of a particular drug delivery agent and a variety of easily measured properties, including how readily it crosses biological barriers and how tightly it binds to a target in test tube experiments. The researchers note that despite the simplicity of their model, it accurately predicts the behavior of HER2-targeted constructs in a mouse model of cancer and of CEA-targeted constructs in humans. In fact, it appears that size and target affinity account for most of the variability in tumor uptake.

One interesting prediction that the model makes is that large constructs, such as nanoparticles, and small ones, including targeting peptides, will deliver more drug into a tumor than will medium constructs, such as engineered antibody fragments. However, the model also predicts that delivery to tumors by nanoparticles over 50 nanometers in diameter will not improve much when targeting agents are aded to the nanoparticles.

This work, which is detailed in a paper titled, "A modeling analysis of the effects of molecular size and binding affinity on tumor targeting," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project