Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Tiny Cage of Gold Responds to Light, Opening to Empty Its Contents

Abstract:
Researchers at Washington University in St. Louis have developed a polymer-coated gold nanocage that not only opens in response to light to release a small amount of a drug payload, but then closes when the light is turned off, leaving this nanodevice ready to deliver another dose of drug on command. Releasing carefully titrated amounts of a drug only near the tissue that is the drug's intended target, this delivery system has the potential to maximize a drug's beneficial effects while minimizing its side effects. This work, led by Younan Xia, Ph.D., was published in the journal Nature Materials.

A Tiny Cage of Gold Responds to Light, Opening to Empty Its Contents

Bethesda, MD | Posted on November 18th, 2009

The key to the nanocage's responsiveness to light lies with a physical phenomenon known as surface plasmon resonance. Some of the electrons in the gold nanocage are not anchored to individual atoms but instead form a free-floating electron gas. Light falling on these electrons can drive them to oscillate as one. This collective oscillation, the surface plasmon, occurs at a particular wavelength, or color, that depends on the thickness of the cage walls. As more gold is deposited on the cages and their walls thicken, a suspension of nanocages shifts from red to wavelengths in the near-infrared. Biological tissues are largely transparent to near-infrared light.

The surface plasmon resonance actually has two parts. At the resonant frequency, light can be scattered off the cages, absorbed by them, or a combination of these two processes. It's the absorption component the scientists exploit to open and close the nanocages. As the nanocages absorb light, they become warm, triggering a change in a special polymer that responds to heat in an interesting way. The polymer, poly(N-isopropylacrylamide), and its derivatives have what's called a critical temperature. When they reach this temperature they undergo a transformation called a phase change.

If the temperature is lower than the critical temperature, the polymer chains are water-loving and stand out from the cage like brushes. The brushes seal the cage's pores and prevent its cargo from leaking out. But as the gold cage responds to light and warms above the critical temperature, the polymer chains shun water, shrink together and collapse. As they shrink, the pores of the cage open, releasing its contents. The amount of drug that diffuses out of the cages depends on how long the cages stay warm, which in turn depends on how long light shines on them.

In order for this open-and-shut process to be medically useful, the investigators tailored the polymer's critical temperature to fall above body temperature (37 °C) but well below 42 °C, the temperature at which heat would begin to kill cells. Tests with doxorubicin-loaded nanocages showed that light triggered drug release as expected, triggering the death of breast cancer cells growing culture.

This work is detailed in a paper titled, "Gold nanocages covered by smart polymers for controlled release with near-infrared light." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE