Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A Tiny Cage of Gold Responds to Light, Opening to Empty Its Contents

Abstract:
Researchers at Washington University in St. Louis have developed a polymer-coated gold nanocage that not only opens in response to light to release a small amount of a drug payload, but then closes when the light is turned off, leaving this nanodevice ready to deliver another dose of drug on command. Releasing carefully titrated amounts of a drug only near the tissue that is the drug's intended target, this delivery system has the potential to maximize a drug's beneficial effects while minimizing its side effects. This work, led by Younan Xia, Ph.D., was published in the journal Nature Materials.

A Tiny Cage of Gold Responds to Light, Opening to Empty Its Contents

Bethesda, MD | Posted on November 18th, 2009

The key to the nanocage's responsiveness to light lies with a physical phenomenon known as surface plasmon resonance. Some of the electrons in the gold nanocage are not anchored to individual atoms but instead form a free-floating electron gas. Light falling on these electrons can drive them to oscillate as one. This collective oscillation, the surface plasmon, occurs at a particular wavelength, or color, that depends on the thickness of the cage walls. As more gold is deposited on the cages and their walls thicken, a suspension of nanocages shifts from red to wavelengths in the near-infrared. Biological tissues are largely transparent to near-infrared light.

The surface plasmon resonance actually has two parts. At the resonant frequency, light can be scattered off the cages, absorbed by them, or a combination of these two processes. It's the absorption component the scientists exploit to open and close the nanocages. As the nanocages absorb light, they become warm, triggering a change in a special polymer that responds to heat in an interesting way. The polymer, poly(N-isopropylacrylamide), and its derivatives have what's called a critical temperature. When they reach this temperature they undergo a transformation called a phase change.

If the temperature is lower than the critical temperature, the polymer chains are water-loving and stand out from the cage like brushes. The brushes seal the cage's pores and prevent its cargo from leaking out. But as the gold cage responds to light and warms above the critical temperature, the polymer chains shun water, shrink together and collapse. As they shrink, the pores of the cage open, releasing its contents. The amount of drug that diffuses out of the cages depends on how long the cages stay warm, which in turn depends on how long light shines on them.

In order for this open-and-shut process to be medically useful, the investigators tailored the polymer's critical temperature to fall above body temperature (37 °C) but well below 42 °C, the temperature at which heat would begin to kill cells. Tests with doxorubicin-loaded nanocages showed that light triggered drug release as expected, triggering the death of breast cancer cells growing culture.

This work is detailed in a paper titled, "Gold nanocages covered by smart polymers for controlled release with near-infrared light." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE