Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UT Knoxville and ORNL researchers turn algae into high-temperature hydrogen source

This image shows the process by which Photosystem I in thermophilic blue-green algae can be catalyzed by platinum to produce a sustainable source of hydrogen. The system was highlighted in a paper by University of Tennessee, Knoxville research Barry Bruce, et al. in Nature Nanotechnology.

Credit: Barry D. Bruce/University of Tennessee, Knoxville
This image shows the process by which Photosystem I in thermophilic blue-green algae can be catalyzed by platinum to produce a sustainable source of hydrogen. The system was highlighted in a paper by University of Tennessee, Knoxville research Barry Bruce, et al. in Nature Nanotechnology. Credit: Barry D. Bruce/University of Tennessee, Knoxville

Abstract:
Platinum-catalyzed photosynthetic process creates high-yield sustainable source of hydrogen

UT Knoxville and ORNL researchers turn algae into high-temperature hydrogen source

Knoxville, TN | Posted on November 14th, 2009

In the quest to make hydrogen as a clean alternative fuel source, researchers have been stymied about how to create usable hydrogen that is clean and sustainable without relying on an intensive, high-energy process that outweighs the benefits of not using petroleum to power vehicles.

New findings from a team of researchers from the University of Tennessee, Knoxville, and Oak Ridge National Laboratory, however, show that photosynthesis - the process by which plants regenerate using energy from the sun - may function as that clean, sustainable source of hydrogen.

The team, led by Barry Bruce, a professor of biochemistry and cellular and molecular biology at UT Knoxville, found that the inner machinery of photosynthesis can be isolated from certain algae and, when coupled with a platinum catalyst, is able to produce a steady supply of hydrogen when exposed to light.

The findings are outlined in this week's issue of the journal Nature Nanotechnology.

Bruce, who serves as the associate director for UT Knoxville's Sustainable Energy and Education Research Center, notes that we already get most of our energy from photosynthesis, albeit indirectly.

The fossil fuels of today were once, millions of years ago, energy-rich plant matter whose growth also was supported by the sun via the process of photosynthesis. There have been efforts to shorten this process, namely through the creation of biomass fuels that harvest plants and covert their hydrocarbons into ethanol or biodiesel.

"Biofuel as many people think of it now -- harvesting plants and converting their woody material into sugars which get distilled into combustible liquids -- probably cannot replace gasoline as a major source of fuel," said Bruce. "We found that our process is more direct and has the potential to create a much larger quantity of fuel using much less energy, which has a wide range of benefits."

A major benefit of Bruce's method is that it cuts out two key middlemen in the process of using plants' solar conversion abilities. The first middle man is the time required for a plant to capture solar energy, grow and reproduce, then die and eventually become fossil fuel. The second middle man is energy, in this case the substantial amount of energy required to cultivate, harvest and process plant material into biofuel. Bypassing these two options and directly using the plant or algae's built-in solar system to create clean fuel can be a major step forward.

Other scientists have studied the possibility of using photosynthesis as a hydrogen source, but have not yet found a way to make the reaction occur efficiently at the high temperatures that would exist in a large system designed to harness sunlight.

Bruce and his colleagues found that by starting with a thermophilic blue-green algae, which favors warmer temperatures, they could sustain the reaction at temperatures as high as 55 degrees C, or 131 degrees F. That is roughly the temperature in arid deserts with high solar irradiation, where the process would be most productive. They also found the process was more than 10 times more efficient as the temperature increased.

"As both a dean and a chemist, I am very impressed with this recent work by Professor Bruce and his colleagues," said Bruce Bursten, dean of UT Knoxville's College of Arts and Sciences. "Hydrogen has the potential to be the cleanest fuel alternative to petroleum, with no greenhouse gas production, and we need new innovations that allow for hydrogen to be readily produced from non-hydrocarbon sources. Professor Bruce and his team have provided a superb example of how excellence in basic research can contribute significantly to technological and societal advances."


###

Co-authors on the paper along with Bruce include Infeyinwa Iwuchukwu, a UT Knoxville graduate student in chemical and biomolecular engineering; Michael Vaughn, a research technician; Natalie Myers, a UT Knoxville graduate student in microbiology; Hugh O'Neill, a UT Knoxville-ORNL research professor and Paul Frymier, a UT Knoxville professor of chemical and biomolecular engineering.

####

About University of Tennessee at Knoxville
UT Knoxville buzzes with energy, ideas, and optimism. Great professors and students from throughout the world live and work in a friendly, safe campus community located in scenic East Tennessee. The campus and its signature "Hill" lure students with green space, nearby lakes, and vistas of the Great Smoky Mountains National Park.

Students enjoy provocative speakers, great entertainers and artists, a first-class research library, a technology-rich infrastructure, great local music and recreation, nationally competitive athletic teams, and abundant opportunities for community service.

The university is a co-manager with Battelle of the nearby Oak Ridge National Laboratory. Faculty and students experience unparalleled research and learning opportunities at the Department of Energy's largest science and energy lab.

For more information, please click here

Contacts:
Jay Mayfield

865-974-9409

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Environment

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Energy

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Fuel Cells

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Imec and Panasonic Demonstrate Breakthrough RRAM Cell July 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project