Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sculptured materials allow multiple channel plasmonic sensors

Akhlesh Lakhtakia
Akhlesh Lakhtakia

Abstract:
Sensors, communications devices and imaging equipment that use a prism and a special form of light -- a surface plasmon-polariton -- may incorporate multiple channels or redundant applications if manufacturers use sculptured thin films.

Sculptured materials allow multiple channel plasmonic sensors

University Park, PA | Posted on November 11th, 2009

"Everyone uses surface plasmon resonance sensors. They are a multi billion-dollar industry worldwide," said Akhlesh Lakhtakia, the Charles Godfrey Binder (Endowed) professor of engineering science and mechanics, Penn State. "This type of sensor provides a fairly quick way to see what you have. It can tell you the concentration of chemicals, but in order to test for more than one chemical today, manufacturers have to use more than one sensor."

Surface plasmon resonance devices currently have a wide range of applications. They are commercially used as sensors for humidity, temperature, chemical concentrations and chemical composition. SPR devices can be used in a form of surface microscopy, as wave guides and tunable filters. Creating two or more channels in each device would multiply SPR utility in all areas of application.

Surface plasmon-polaritons are electromagnetic waves that flow along a sandwich of a metal and a dielectric. When light shines through a prism onto the sandwich, electrons form a cloud or plasma in the metal and the molecules of the dielectric get stretched or polarized. Under special conditions, a plasmon-polariton combination forms and moves as a single unit along the sandwich. The formation can be disturbed by the presence of an additional chemical in the dielectric. The disturbance provides the sensing principle. Useful as they are, each sensor can only detect one chemical for each prism and sandwich.

In a series of papers Lakhtakia and his colleagues report on their theoretical and experimental investigation into the possibility of propagating more than one surface plasmon-polariton wave of the same color on a substrate. They recently reported on their experimental work in the Journal of Nanophotonics and the journal Electonic Letters.

The theoretical work indicated that for one wavelength or color of light, it should be possible to generate not just one, but up to three possible plasmon-polaritons if the dielectric used is not a traditional material, but a periodically non-homogeneous sculptured nematic thin film.

"Just because the mathematics suggest three possible surface plasmon-polariton waves does not mean that they can actually all be created," said Lakhtakia. "We had to find someone who could produce the thin films that we needed to test the possibilities experimentally."

Yi-Jun Jen, professor and chair, and Chia-Feng Lin, graduate student, both of the department of electro-optical engineering, National Taipei University of Technology, fabricated the sculptured nematic thin films that were then used in a standard Kretschmann surface plasma resonance sensor configuration. The researchers found that they produced three surface plasmon-polariton waves of light with the same wavelength or color, but with three different speeds. Two of these were polarized in one direction -- p polarized -- and the third was polarized in the other direction - s polarized.

"This would allow us to test more than two things or to test for the same thing twice in order to reduce sensing errors," said Lakhtakia.

The key to this finding is that sculptured thin films are not the same structure along their thickness. Instead, the pattern of sculpturing does periodically repeat. This periodicity allows the production of two or more surface waves of the same wavelength.

Lakhtakia, working with Devender, an international undergraduate research intern and Drew Patrick Pulsifer, graduated student in engineering science and mechanics, next tried a chiral sculptured thin film. Chiral thin films are similar to periodic sculptured nematic thin films but are like a multitude of parallel corkscrews. Using these thin films the researchers generated two surface plasmon-polaritons waves, but with different speeds, both with p-polarized light.

"If this approach can be optimized and commercialized, there are exciting prospects in store for plasmonic-based sensing, imaging and communications," said Lakhtakia.

####

About Penn State
Penn State is a multicampus public research university that educates students from Pennsylvania, the nation and the world, and improves the well being and health of individuals and communities through integrated programs of teaching, research, and service.

Our instructional mission includes undergraduate, graduate, professional, and continuing education offered through both resident instruction and online delivery. Our educational programs are enriched by the cutting edge knowledge, diversity, and creativity of our faculty, students, and staff.

Our research, scholarship, and creative activity promote human and economic development, global understanding, and progress in professional practice through the expansion of knowledge and its applications in the natural and applied sciences, social sciences, arts, humanities, and the professions.

As Pennsylvania's land-grant university, we provide unparalleled access and public service to support the citizens of the Commonwealth. We engage in collaborative activities with industrial, educational, and agricultural partners here and abroad to generate, disseminate, integrate, and apply knowledge that is valuable to society.

For more information, please click here

Contacts:
Andrea Messer
814-865-9481
live.psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Chemistry

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Carbon displays quantum effects July 13th, 2017

Thin films

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Nanometrics Expands Position in Advanced Memory Devices with Atlas for Thin Film Process Control: Atlas Films Systems Adopted by Multiple Customers for Advanced Memory Volume Manufacturing July 11th, 2017

Imaging

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Possible Futures

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Announcements

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project