Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > First Bose-Einstein condensation of strontium

In an international first, scientists from the Institute of Quantum Optics and Quantum Information in Austria produced a Bose-Einstein condensate of the alkaline-earth element strontium.

Credit: IQOQI/Schreck
In an international first, scientists from the Institute of Quantum Optics and Quantum Information in Austria produced a Bose-Einstein condensate of the alkaline-earth element strontium. Credit: IQOQI/Schreck

Abstract:
Quantum physicists of Innsbruck win international race

First Bose-Einstein condensation of strontium

Innsbruck | Posted on November 10th, 2009

In an international first, scientists from the Institute of Quantum Optics and Quantum Information (IQOQI) produced a Bose-Einstein condensate of the alkaline-earth element strontium, thus narrowly winning an international competition between many first-rate scientific groups. Choosing the isotope 84Sr, which has received little attention so far, proved to be the right choice for the breakthrough. It can now be regarded as an ideal candidate for future experiments with atomic two-electron systems.

This is not the first time that Prof. Rudolf Grimm and his scientific team have won a tightly contested race between scientists: in 2002, they were the first to produce a Bose-Einstein condensate of cesium atoms. Now junior scientist Dr. Florian Schreck and his team obtained the first Bose-Einstein condensate of strontium atoms, thus winning a tight international race despite having started their experiment much later than their competitors in the U.S.A. "We backed the right horse and, towards the end, worked day and night to realize this Bose-Einstein condensate," says Dr. Schreck. For years physicists from all over the world have tried to condense atomic strontium, focusing mainly on the two strontium isotopes that are relatively abundant in nature (86Sr, 88Sr). But the breakthrough came when Dr. Schrecks' team decided to try a new, almost counterintuitive approach. "A year ago I had the idea to try it with the isotope 84Sr which has a low natural abundance," recounts Dr. Schreck concerning the moment of breakthrough. Never considered before because of its' low natural abundance, new theoretical calculations soon showed that this neglected isotope had an ideal scattering length for producing a Bose-Einstein Condensate as compared to the other, more abundant, isotopes.

Condensation of Strontium

As an initial step, strontium atoms were collected in a magnetic trap and cooled using laser cooling and trapping techniques that were refined in IQOQI. In order to isolate these atoms from undesired interactions with the environment, the experiment was performed in an ultra-high vacuum chamber. After loading the atoms into an optical trap, they were cooled to near absolute zero (- 273.15 ºC) by evaporative cooling techniques made possible due to the excellent scattering properties of this particular isotope - the atoms collide and thermalize without being lost due to molecule formation. This was the crucial step that was not possible with the other strontium isotopes. In this manner, a Bose-Einstein Condensate of 150,000 atoms was produced. This new form of matter is a purely quantum phenomena where the atoms lose their individual identities and coalesce into a single, collective state. The scientists of the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (ÖAW) have now succeeded in doing with strontium what other scientists have done with other chemical elements. Only two weeks after the success of the Innsbruck team, a research group from the U.S. also achieved Bose-Einstein condensation of strontium atoms. Both research results are now published in the same issue of the journal Physical Review Letters.

Hot Scientific Topic

Strontium belongs to the atomic two-electron systems; these are elements whose atoms have two valence electrons. Most of the atoms with one valence electron have already been successfully condensed (the Nobel Prize in Physics was awarded for this achievement in 2001), making Bose-Einstein condensation of two-electron systems a new hot topic in the field of physics. Although ytterbium (2003) and calcium (June 2009) were the first two-electron systems to be condensed, it is with strontium that significantly large Bose-Einstein Condensates have been produced. With Bose-Einstein condensates research in fundamental quantum mechanics can be carried out; these include developing new schemes for quantum computation, modeling condensed matter systems, and performing precision measurements of forces on the micrometer scale, which still pose many challenges to physicists today.

"The opportunities we have at the Institute for Quantum Optics and Quantum Information (IQOQI) are a crucial factor in our success," underlines Rudolf Grimm. "We had a free hand in trying something totally new and, thus, were able to enter this international race." But Dr. Schreck and his team are not stopping there. They have already started working on a new exciting direction; besides the three bosonic isotopes of strontium mentioned above, there is a fermionic isotope, 87Sr, which Dr. Schreck intends to use to produce the first ultracold Fermi gas of strontium atoms.

####

About University of Innsbruck
The University of Innsbruck is a fully fledged University offering a wide ranging and high quality preparation for professional life through over 7,000 courses and teaching events in its 15 faculties.

2,400 teachers guarantee optimal support and an ideal preparation for the employment market. A university degree remains clearly distinguishable from all other academic qualifications and continues to offer the best professional perspectives.

With its 20,000 students, Innsbruck is a university city in the heart of the Alps. Choose to study in one of the most beautiful places on earth. The university city of Innsbruck is a place which fosters the emergence of talent.

For more information, please click here

Contacts:
Rudolf Grimm

43-512-507-6300

Copyright © EurekAlert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Quantum nanoscience

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE