Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > 'Universal' equation describes how materials behave at nanoscale

November 5th, 2009

'Universal' equation describes how materials behave at nanoscale

Abstract:
Understanding how materials behave at tiny length scales is crucial for developing future nanotechnologies and continues to be a great challenge for both theoretical and experimental physicists alike. Now, a physicist at the Institute of Electronics, Microelectronics and Nanotechnology (IEMN) in Villeneuve d'Ascq, France, has borrowed from 19th century physics to come up with a new "universal" equation that predicts how size affects the key physical properties of nanometre-sized structures, which behave very differently from their macroscopic counterparts.

The surface-to-volume ratio of a structure increases dramatically as it is made smaller and therefore surface effects can be very important for tiny devices. "My equation links size effects not only to this surface-to-volume ratio but also to the intrinsic nature of the nanoparticles involved - that is, whether they are fermions or bosons," Grégory Guisbiers told physicsworld.com.

Source:
physicsworld.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Physics

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project