Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Continues on Secure, Mobile, Quantum Communications

Researcher Dr. David H. Hughes of the Air Force Research Lab (AFRL) in Rome, N.Y. is leading a team that is investigating long-distance, mobile optical links imperative for secure quantum communications capabilities in theater. (Credit: Brian Rhea, Director, Corporate Communications, AOptix Technologies)
Researcher Dr. David H. Hughes of the Air Force Research Lab (AFRL) in Rome, N.Y. is leading a team that is investigating long-distance, mobile optical links imperative for secure quantum communications capabilities in theater. (Credit: Brian Rhea, Director, Corporate Communications, AOptix Technologies)

Abstract:
Researcher Dr. David H. Hughes of the Air Force Research Laboratory in Rome, N.Y. is leading a team investigating long-distance, mobile optical links imperative for secure quantum communications capabilities in theater.

Research Continues on Secure, Mobile, Quantum Communications

Dayton, OH | Posted on October 29th, 2009

Hughes and his Air Force Office of Scientific Research-funded team have conducted high data-rate experiments using an optical laser link, a tool which exploits the quantum noise of light for higher security. The system uses adaptive optics for transmission of high data-rate video and audio signals over long distances.

AOptix Technologies, a developer of ultra-high bandwidth laser communication solutions for government and commercial markets has joined forces with AFOSR and AFRL to conduct flight tests at 10,000 feet to evaluate the performance of the high-altitude, air-to-ground, quantum communications links.

Up to this point, the challenge with free space optical links, which use fiber optics for transmission have been the turbulence or distortions from temperature differences that cause motion or wind in the atmosphere.

"When you transmit information through turbulence (motion in the atmosphere caused by turbulent cells or "wind") it's distorted just like the information coming from the light reflected off a distant, twinkling star to your eye. It's fuzzy," said Hughes. "You have to overcome that by using adaptive optics to rectify the distortion and get a better quality signal."

As of right now, Hughes and his team have established an optical link without distortion in test situations at a distance of 35 kilometers in both stationary and flight situations. The next flight test will aim for increased altitudes to demonstrate further air-to-ground distances.

"If we can now put one link on the ground and one on a demo aircraft, it wouldn't take much to apply the technology to operational aircraft for the Air Force," said Hughes.

"This new capability may even save lives because it will enable the military to access ultra-high bandwidth ISR (intelligence, surveillance reconnaissance) information in real-time from various manned and unmanned airborne platforms," said Dean Senner, President & CEO of AOptix Technologies.

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

ABOUT AFRL:

The Air Force Research Laboratory is the heart of science and technology for the United States Air Force. AFRL is responsible for developing the systems crucial to aerospace superiority. With a workforce of approximately 9,600 people, the laboratory's wealth of talented individuals help AFRL lead science and technology development through in-house and contractual programs. Additionally, the laboratory outsources approximately 75% of its budget to industry, academia, and the international community - leveraging the world's knowledge to provide the most innovative science and technology to the Air Force.

ABOUT AOPTIX TECHNOLOGIES:

AOptix Technologies is a privately funded company founded in 2000. With core technology expertise in the application of advanced adaptive optics, they develop free space optical communications and iris biometrics based identification solutions for both government and commercial markets. For additional information, please see www.aoptix.com.

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Possible Futures

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Announcements

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Military

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Quantum nanoscience

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project