Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticle breakthrough could improve solar cells

Precision-crafted nanoparticles could
enable photovoltaic cells to harness a
much bigger chunk of the sun’s energy.
Precision-crafted nanoparticles could enable photovoltaic cells to harness a much bigger chunk of the sun’s energy.

Abstract:
The sun may soon power many more homes and appliances, thanks to chemists at Idaho National Laboratory and Idaho State University. They have invented a way to manufacture highly precise, uniform nanoparticles to order. The technology, which won an R&D 100 Award this year, has the potential to vastly improve photovoltaic cells and further spur the growing nanotech revolution.

Nanoparticle breakthrough could improve solar cells

Idaho Falls, ID | Posted on October 29th, 2009

INL chemist Bob Fox and his ISU colleagues were looking for a better way to make semiconducting nanoparticles for solar cells. When the researchers introduced "supercritical" carbon dioxide — CO2 that behaves like both a gas and a liquid — to their reactions, they generated high-quality nanoparticles at low, energy-saving temperatures. And, surprisingly, the nanoparticles were incredibly uniform.

With subsequent tweaking, the team figured out how to make nanoparticles of prescribed sizes — anywhere from 1 to 100 nanometers — with unprecedented precision. Because the properties of nanoparticles are so strongly size-dependent, the implications of this breakthrough are vast.

The new methodology could lead to more efficient solar cells, for example. Photovoltaic cells generate electricity when incoming photons knock electrons loose from atoms of a semiconducting material. The energy required to free these electrons — called the band gap — is specific to each material and corresponds to a mere sliver of the sun's radiation spectrum. Lower-energy photons do nothing, and the extra punch of higher-energy photons is wasted as heat. This fact explains why the efficiency of most current cells maxes out around 20 percent.

But more of the sun's energy could be captured if semiconductor building blocks could be tuned to several specific wavelengths of light. The band gap of semiconducting nanoparticles changes greatly with size, so precise control of nanoparticle dimensions may make it possible to manufacture such building blocks from a single material. A photovoltaic cell made of such components could capture huge swathes of the solar energy spectrum.

Other, similar applications should soon appear on the horizon for the technology, which has been licensed by Precision Nanoparticles, Inc., of Seattle.

"The only thing limiting us at this point is our imagination," Fox says.

####

About Idaho National Laboratory
In operation since 1949, INL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy's missions in nuclear and energy research, science, and national defense.

For more information, please click here

Contacts:
Idaho National Laboratory
2025 Fremont Avenue
Idaho Falls, ID 83415
866-495-7440

Copyright © Idaho National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Discoveries

Improving organic transistors that drive flexible and conformable electronics: UMass Amherst scientists advance understanding of strain effects on performance May 5th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Energy

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project