Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Agilent Technologies and Stanford University to Explore New Class of Nanoscale Devices

Abstract:
Agilent Technologies Inc. (NYSE: A) today announced it is collaborating with Stanford University in a research program designed to explore a new class of nanoscale devices using a combinations of the scanning probe microscope (SPM) and atomic layer deposition (ALD). The research will enable the rapid prototyping and characterization of nanoscale devices with breakthroughs in sub 10 nm scale for a wide range of applications.

Agilent Technologies and Stanford University to Explore New Class of Nanoscale Devices

Santa Clara, CA | Posted on October 27th, 2009

"The novel nanostructures will be fabricated and characterized in-situ in this unique SPM-ALD tool in order to rapidly prototype a wide variety of next-generation devices," said Fritz Prinz, professor and chairman, mechanical engineering, Stanford University. "The SPM-ALD tool will enable us to build devices which take advantage of the quantum confinement effects present at small length scales, length scales that could not be accessed with traditional lithography methods. These devices can only be built with manufacturing tools possessing extraordinary spatial resolution."

This program focuses on the integration of ALD, a thin-film technique capable of sub-nanometer precision in thickness, with the nanometer lateral resolution SPM in a drive to extend the capability of scanning probe techniques to prototyping and device fabrication. Historically, performance of electronic devices has been limited by traditional manufacturing methods, such as optical and electron beam lithography, which are not likely to deliver feature resolution significantly below 20 nm. However, the quantum mechanical effects of electron confinement in devices 10 nm or smaller result in phenomena qualitatively different than those seen in larger devices. Taking advantage of this quantum confinement is predicted to result in a new paradigm for electronic devices.

"We chose Stanford University for this grant for the recognized expertise of professor Prinz and team, and the close alignment between the proposed research and the future of Agilent's SPM business," said Jack Wenstrand, Agilent's director of university relations. The work between Agilent and Stanford University is part of Agilent's University Relations Program, which facilitates collaborations with universities around the world. Agilent supports scientific work with universities worldwide through direct grants and collaborative research.

####

About Agilent Technologies Inc.
Agilent Technologies Inc. (NYSE: A) is the world's premier measurement company and a technology leader in communications, electronics, life sciences and chemical analysis. The company's 18,000 employees serve customers in more than 110 countries. Agilent had net revenues of $5.8 billion in fiscal 2008.

About Stanford University

Stanford is recognized as one of the world's leading universities. The university's mission is to prepare students for personal success and direct usefulness in life and promote the public welfare by exercising an influence on behalf of humanity and civilization. Stanford University offers undergraduate and graduate studies from seven schools. www.stanford.edu

For more information, please click here

Contacts:
Janet Smith
Americas
+1 970 679 5397

Twitter: twitter.com/JSmithAgilent
PR Blog: janetsmithagilent.wordpress.com/

Copyright © Agilent Technologies Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Alliances/Trade associations/Partnerships/Distributorships

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project