Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NCI awards $15.2 million to create Princeton Physical Sciences-Oncology Center

Guillaume Lambert (left), a physics graduate student at Princeton, and Robert Austin, principal investigator of the new Princeton Physical Sciences-Oncology Center and physics professor, observe prostate cancer cells growing on a microhabitat in Jadwin Hall. With their collaborators, the scientists are developing devices and technologies that will allow them to control a wide range of variables in an effort to understand how cancer evolves. The entire experimental setup will be controllable via the Web, enabling their colleagues at peer institutions to conduct experiments remotely. (Photo: Denise Applewhite)
Guillaume Lambert (left), a physics graduate student at Princeton, and Robert Austin, principal investigator of the new Princeton Physical Sciences-Oncology Center and physics professor, observe prostate cancer cells growing on a microhabitat in Jadwin Hall. With their collaborators, the scientists are developing devices and technologies that will allow them to control a wide range of variables in an effort to understand how cancer evolves. The entire experimental setup will be controllable via the Web, enabling their colleagues at peer institutions to conduct experiments remotely. (Photo: Denise Applewhite)

Abstract:
Princeton University physical scientists will partner with researchers at four other institutions to explore the driving forces behind the evolution of cancer under a five-year, $15.2 million award from the National Cancer Institute.

NCI awards $15.2 million to create Princeton Physical Sciences-Oncology Center

Princeton, NJ | Posted on October 26th, 2009

The Princeton Physical Sciences-Oncology Center was launched Oct. 26 as one of 12 centers in the institute's new network of Physical Sciences-Oncology Centers. Collaborating with Princeton will be: the University of California-San Francisco; the Johns Hopkins Hospital; the University of California-Santa Cruz; and the Salk Institute for Biological Studies in La Jolla, Calif.

The center's goal is to understand the explosive evolution of cancer under stress at a deep theoretical and experimental level by leveraging the strengths of an interdisciplinary team of physicists, engineers, chemists, biochemists and oncologists. Using a physics-based approach, the team intends to better grasp the rules or laws that govern how cancer evolves, which may one day inform entirely new treatment approaches.

"The mortality rates for many cancers are flat to rising," said Robert Austin, the center's principal investigator and a Princeton professor of physics. "It's true that people are living longer than they used to live, but in the end, the cancer wins most of the time. Our current 'shock and awe' approach to treatment may not be the best thing to do -- we're leaving behind small populations of highly resistant cells."

This course may, in turn, contribute to the development of intractable cancer recurrences. Because it is nearly impossible to kill every single cancerous cell in the body, those that survive the stress of chemotherapy and radiation often have undergone mutations that render them resistant to traditional treatments, capable of rapid reproduction and therefore exceedingly dangerous.

"The evolution of cancer is the Achilles' heel of cancer treatment," said Thea Tlsty, the center's co-principal investigator and professor of pathology at the University of California-San Francisco. "It's why we can't deal with metastasis or drug resistance; it's the thing that kills people. We're addressing these important questions -- how does evolution lead to metastasis and resistance, and how can we use evolution to skew the outcome in a different way?"

Research in the center hinges on the use of microfabrication techniques to create complex habitats that provide an unprecedented ability to manipulate many variables at once and observe how cells respond, allowing the team to determine how different conditions promote or inhibit rapid cancer evolution and tumor formation.

The results they obtain will inform the development of sophisticated computer models that simulate tumor growth and predict how and when certain tumors might invade surrounding tissue. Data obtained from these simulations will, in turn, suggest new questions to ask and explore.

"One ambitious goal is the creation of an 'in silico' growing tumor, meaning a realistic model on the computer, which could suggest new experiments, test new hypotheses, predict behavior in experimentally unobservable situations, and be employed for early detection," said team member Salvatore Torquato, a professor in the Department of Chemistry, the Princeton Institute for the Science and Technology of Materials, and the Princeton Center for Theoretical Science. "As you go back and forth to refine the experiments and the theoretical models, you're coming to a real understanding of cancer. And that is what we'd ultimately like to do."

The experimental microhabitats, being developed jointly between the labs of Austin and James Sturm, a professor of electrical engineering and the director of the Princeton Institute for the Science and Technology of Materials, are constructed on chips of silicon or polydimethylsiloxane (PDMS), a silicon-based plastic. Featuring a series of wells just 10 to 100 microns in size (a human hair is roughly 100 microns in diameter), the devices allow for the growth of distinct but interconnected populations of cells. Ultrasmall channels link the compartments together, providing avenues for cells in different communities to move and interact with one another. A given chip might contain tens to hundreds of interconnected wells, each capable of housing hundreds of cells.

A series of pumps and valves on the chips will enable the delivery of a variety of mechanical and chemical stressors, such as extreme pressure or chemotherapeutic agents, to different populations of cells living under a range of different conditions, including gradients of temperature and resource availability.

"A tumor is a heterogeneous thing with many different metapopulations of cells inside it," Austin said. "We're trying to represent the biological environment of a tumor and hopefully understand the rules by which a tumor evolves."

Experiments will be conducted at Princeton using both bacterial cells, which form biofilms analogous to human tissue that can be used as model systems, and human cancer cell lines. The research team currently is developing technologies to make the microscopes fully controllable remotely, allowing team members at partner institutions to conduct experiments and obtain real-time data via the Web.

The Princeton Physical Sciences-Oncology Center's research will build on previous experiments by Austin and his collaborators using a silicon microhabitat to study the evolution of E. coli bacteria. The research team already is culturing prostate cancer cells on silicon and PDMS chips, using pumps and valves to refresh the growth medium.

To create the most realistic representations of human tissue, the microhabitats in development will be far more complex than the currently existing chips. One key challenge to address will be optimizing the use of biological matrices on the chips to make them extremely favorable for the growth of mammalian cells, triggering rapid evolution in a relatively short period of time. This process also may require the development of novel three-dimensional fabrication techniques.

Additional members of the research team include David Botstein, the director of Princeton's Lewis-Sigler Institute for Integrative Genomics, who will lead the center's outreach and education efforts; David Haussler, a professor of biomolecular engineering and the director of the Center for Biomolecular Science and Engineering, and Nader Pourmand, an assistant professor of biomolecular engineering, both of the University of California-Santa Cruz; Robert Getzenberg, the director of research of the James Buchanan Brady Urological Institute at the Johns Hopkins Hospital; and Beverly Emerson, a professor in the Regulatory Biology Laboratory at the Salk Institute for Biological Studies.

The other centers in the National Cancer Institute's new network will be based at Arizona State University, Cornell University, the H. Lee Moffitt Cancer Center & Research Institute, Johns Hopkins University, the Massachusetts Institute of Technology, Memorial Sloan-Kettering Cancer Center, Northwestern University, the Scripps Research Institute, the University of California-Berkeley, the University of Southern California and the University of Texas Health Science Center at Houston.

"By bringing a fresh set of eyes to the study of cancer, these new centers have great potential to advance, and sometimes challenge, accepted theories about cancer and its supportive microenvironment," said National Cancer Institute Director John Niederhuber. "Physical scientists think in terms of time, space, pressure, heat and evolution in ways that we hope will lead to new understandings of the multitude of forces that govern cancer -- and with that understanding, we hope to develop new and innovative methods of arresting tumor growth and metastasis."



####

About Princeton University
Princeton simultaneously strives to be one of the leading research universities and the most outstanding undergraduate college in the world. As a research university, it seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding, and in the education of graduate students. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

The University provides its students with academic, extracurricular and other resources—in a residential community committed to diversity in its student body, faculty and staff—that help them achieve at the highest scholarly levels and prepare them for positions of leadership and lives of service in many fields of human endeavor.

Through the scholarship and teaching of its faculty, and the many contributions to society of its alumni, Princeton seeks to fulfill its informal motto: “Princeton in the Nation’s Service and in the Service of All Nations."

For more information, please click here

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Chemistry

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Physics

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Nanomedicine

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Cervical cancer detection goes portable August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Announcements

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Exercise-induced hormone irisin is not a 'myth' August 14th, 2015

Nanobiotechnology

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

How UEA research could help build computers from DNA August 19th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Alliances/Trade associations/Partnerships/Distributorships

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

National Space Society Welcomes Geoff Notkin As New NSS Governor August 26th, 2015

XEI Scientific appoints EM Resolutions as Distributor for the UK & Irish markets August 11th, 2015

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic