Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanowire biocompatibility in the brain: So far so good

Abstract:
The biological safety of nanotechnology, how the body reacts to nanoparticles, is a hot topic; researchers at Lund University have managed for the first time to carry out successful experiments involving the injection of so-called 'nanowires'

Nanowire biocompatibility in the brain: So far so good

Sweden | Posted on October 22nd, 2009

In the future it is expected that it will be possible to insert nanoscale electrodes to study learning and memory functions and to treat patients suffering from chronic pain, depression, and diseases such as Parkinson's. But it is not known what would happen if the nanoelectrodes would break away from their contact points.

Scientists at Lund University have investigated this 'worst case by injecting nanowires in rat brains. The nanowires resemble in size and shape the registration nodes of electrodes of the future. The results show that the brain 'clean-up cells' (microglia), take care of the wires. After twelve weeks only minor differences were observed between the brains of the test group and the control group. The findings are published in Nano Letters.

"The results indicate that this is a feasible avenue to pursue in the future. Now we have a better base on which to develop more advanced and more useful electrodes than those we have today," explains Christelle Prinz, a scientist in Solid State Physics at the Faculty of Engineering (LTH), who, together with Cecilia Eriksson Linsmeier at the Faculty of Medicine, is the lead author of the article 'Nanowire biocompatibility in the brain - Looking for a needle in a 3D stack.'

Electrodes are already used today to counteract symptoms of Parkinson's disease, for instance. Future nanotechnology may enable refined and enhanced treatment and pave the way for entirely new applications.

One advantage of nanoscale electrodes is that they can register and stimulate the tiniest components of the brain. To study the biological safety - the biocompatibility - of these electrodes, the scientists first produced nanowires that were then mixed into a fluid that was injected into the rat brains. An equal number of rats were given the solution without the nanowires. After 1, 6, and 12 weeks, respectively, the researchers looked at how the rat brains were reacting to the nanowires.

The research project is run by the university's interdisciplinary Neuronano Research Center (NRC), coordinated by Jens Schouenborg at the Faculty of Medicine and funded by a Linnaeus grant and the Wallenberg Foundation, among others. The work has involved scientists from the Faculty of Medicine and from the Nanometer Consortium, directed by Lars Samuelson, LTH.

"We studied two of the brain tissue's support cells: on the one hand, microglia cells, whose job is to 'tidy up' junk and infectious compounds in the brain and, on the other hand, astrocytes, who contribute to the brain's healing process. The microglia 'ate' most of the nanowires. In weeks 6 and 12 we could see remains of them in the microglia cells," says Nils Danielsen, a researcher with the NRC.

The number of nerve cells remained constant for test and control groups, which is a positive sign. The greatest difference between the test and control groups was that the former had a greater astrocyte reaction at one week, but this level eventually declined. At weeks 6 and 12 the scientists were not able to detect any difference at all.

"Together with other findings and given that the number of microglial cells decreased over time, the results indicate that the brain was not damaged or chronically injured by the nanowires," Christelle Prinz concludes.



Authors: Cecilia Linsmeier Eriksson, Christelle N. Prinz, Lina ME Pettersson, Philippe Caroff, Lars Samuelson, Jens Schouenborg, Lars Montelius, Nils Danielsen.

The Nano Letters homepage: pubs.acs.org/journal/nalefd
Link to the paper: pubs.acs.org/doi/abs/10.1021/nl902413x

####

About Swedish Research Council
The Swedish Research Council is a government agency that provides funding for basic research of the highest scientific quality in all disciplinary domains. Besides research funding, the agency works with strategy, analysis, and research communication.

For more information, please click here

Contacts:
Kristina Lindgarde

Swedish Research Council

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Preparing for Nano

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Safety-Nanoparticles/Risk management

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Nanobiotechnology

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic