Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Team Uses Self-Assembly to Make Tiny Particles With Patches of Charge

Dennis Discher
Dennis Discher

Abstract:
Physicists, chemists and engineers at the University of Pennsylvania have demonstrated a novel method for the controlled formation of patchy particles, using charged, self-assembling molecules that may one day serve as drug-delivery vehicles to combat disease and perhaps be used in small batteries that store and release charge.

Penn Team Uses Self-Assembly to Make Tiny Particles With Patches of Charge

Philadelphia, PA | Posted on October 20th, 2009

Researchers demonstrated that the positive electrical charges of calcium ions — just like the calcium in teeth and bone — can form bridges between negatively charged polymers that would normally repel each other. The polymers, similar to the lipids that make the membranes surrounding living cells, have both a water-loving part linked to a water-repelling part. On the surfaces of these cell-sized polymer sacks, the calcium ions create calcium-rich islands or patches on top of negatively-charged polymer. Copper ions also work, and the patches can be made to coalesce and cover half of the particle. This polarized structure is the basic arrangement needed to set up, for example, the two electrodes of a microscopic battery. They could also one day be functionalized into docking sites to enhance targeted delivery of drug-laden particles to cells.

While the concept seems simple, that opposite charges attract, the creation and control of patches on one small particle has been a challenge. Scientists like Dennis E. Discher, principal investigator of the study and a professor of chemical and biomolecular engineering at Penn, are designing materials at the nanoscale because future technologies will increasingly rely on structures with distinct and controlled surfaces. Physicians, for example, will improve medical therapies by wrapping drugs within the bioengineered polymer sacks, or by creating tiny biomedical sensors. Green energy production and storage will also require structures with scales no longer measured by inches, but by micrometers and nanometers.

The collaboration involved faculty from Penn's School of Engineering and Applied Science, the School of Medicine and the School of Arts and Sciences, and demonstrated, more specifically, the selective binding of multivalent cationic ligands within a mixture of both polyanionic and non-ionic amphiphiles that all co-assemble into either patchy sacks called vesicles or molecular cylinders called worm-like micelles. Similar principles have been explored with lipids in the field of membrane biophysics because calcium is key to many cellular signaling processes. The trick is that the energy of attraction of opposite charges must be adjusted to find a balance with the large entropic price for localization into spots. If the attractions are too large, the ions precipitate, just like adding too much sugar to tea or coffee.

Using a little bit of acid or a little of base, the patchy polymer vesicles and cylinders can be made with tunable sizes, shapes and spacings. Assemblies with single large patches are called Janus assemblies, named after the double-faced Roman god, and the assemblies generally last for years because these are polymer-based structures.

"The key advance we present in this study is the restricted range of conditions that are required for self assembly in these solutions," Discher said. "We show that, in addition to polymers, negatively-charged cell lipids which are involved in all sorts of cell-signaling processes like cell motion and cancer mechanics, can also make domains or islands with calcium."

The work is representative of national research into soft matter, materials constructed from organic molecules like lipids, peptides and nucleic acids. A properly designed molecular system can produce a wide array of nanostructures and microstructures, emulating and extending what is found in nature.

The study, published as the cover article in the journal Nature Materials, was conducted by members of Penn's Laboratory for Research on the Structure of Matter, including David A. Christian, Aiwei Tian and Karthikan Rajagopal of the Department of Chemical and Biomolecular Engineering; Wouter G. Ellenbroek and Andrea J. Liu of the Department of Physics and Astronomy; Ilya Levental of the Bioengineering Graduate Group; Paul A. Janmey of the Department of Physiology; Tobias Baumgart of the Department of Chemistry; and Discher.

The study was funded by the National Science Foundation, the National Institutes of Health, the National Science Foundation and the Department of Defense.

####

About University of Pennsylvania
Today Penn is home to a diverse undergraduate student body of nearly 10,000, hailing from every state in the union and all around the globe. Admissions are among the most selective in the country and Penn consistently ranks among the top 10 universities in the annual U.S. News & World Report survey. Another 10,000 students are enrolled in Penn's 12 graduate and professional schools, which are national leaders in their fields. The Wharton School is consistently one of the nation's top three business schools. The School of Nursing is one of the two best in the U.S. The School of Arts and Sciences, Graduate School of Education, Law School, School of Medicine, School of Veterinary Medicine, and Annenberg School for Communication all rank among the top 10 schools in their fields.

For more information, please click here

Contacts:
Jordan Reese
215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Possible Futures

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Nanobiotechnology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Alliances/Trade associations/Partnerships/Distributorships

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project