Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Smallest Nanoantennas for High-speed Data Networks: Most Rapid Information Transmission –Also Applied in Microbiology, Photovoltaics, and Sensor Technology

Nano dipole antennas under the microscope: The colors reflect the different trans-mission frequencies. (Photo by: LTI).
Nano dipole antennas under the microscope: The colors reflect the different trans-mission frequencies. (Photo by: LTI).

Abstract:
More than 120 years after the discovery of the electromagnetic character of radio waves by Heinrich Hertz, wireless data transmission dominates information technology. Higher and higher radio frequencies are applied to transmit more data within shorter periods of time. Some years ago, scientists found that light waves might also be used for radio transmission. So far, however, manufacture of the small antennas has required an enormous expenditure. KIT scientists have now succeeded for the first time in specifically and reproducibly manufacturing smallest optical nanoantennas from gold.

Smallest Nanoantennas for High-speed Data Networks: Most Rapid Information Transmission –Also Applied in Microbiology, Photovoltaics, and Sensor Technology

Germany | Posted on October 20th, 2009

In 1887, Heinrich Hertz discovered the electromagnetic waves at the former Technical College of Karlsruhe, the predecessor of Universität Karlsruhe (TH). Specific and directed generation of electromagnetic radiation allows for the transmission of information from a place A to a remote location B. The key component in this transmission is a dipole antenna on the transmission side and on the reception side. Today, this technology is applied in many areas of everyday life, for instance, in mobile radio communication or satellite reception of broadcasting programs. Communication between the transmitter and receiver reaches highest efficiency, if the total length of the dipole antennas corresponds to about half of the wavelength of the electromagnetic wave.

Radio transmission by high-frequency electromagnetic light waves in the frequency range of several 100,000 gigahertz (500,000 GHz correspond to yellow light of 600 nm wavelength) requires minute antennas that are not longer than half the wavelength of light, i.e. 350 nm at the maximum (1 nm = 1 millionth of a millimeter). Controlled manufacture of such optical transmission antennas on the nanoscale so far has been very challenging worldwide, because such small structures cannot be produced easily by optical exposure methods for physical reasons, i.e. due to the wave character of the light. To reach the precision required for the manufacture of gold antennas that are smaller than 100 nm, the scientists working in the "Nanoscale Science" DFG-Heisenberg Group at the KIT Light Technology Institute (LTI) used an electron beam process, the so-called electron beam lithography. The results were published recently in the Nanotechnology journal (Nanotechnology 20 (2009) 425203).

These gold antennas act physically like radio antennas. However, the latter are 10 million times as large, they have a length of about 1 m. Hence, the frequency received by nanoantennas is 1 million times higher than radio frequency, i.e. several 100,000 GHz rather than 100 MHz.

These nanoantennas shall transmit information at extremely high data rates, because the high frequency of the waves allows for an extremely rapid modulation of the signal. For the future of wireless data transmission, this means acceleration by a factor of 10,000 at reduced energy consumption. Hence, nanoantennas are considered a major basis of new optical high-speed data networks. The positive side-effect: Light in the range of 1000 to 400 nm is not hazardous for man, animals, and plants.

In the future, nanoantennas from Karlsruhe may not only be used for information transmission, but also as tools for optical microscopy: "With the help of these small nano light emitters, we can study individual biomolecules, which has not been established so far", says Dr. Hans-Jürgen Eisler, who heads the DFG Heisenberg group at the Light Technology Institute. Moreover, the nanoantennas may serve as tools to characterize nanostructures from semiconductors, sensor structures, and integrated circuits. The reason is the efficient capture of light by nanoantennas. Thereafter, they are turned into light emitters and emit light quantums (photons).

The LTI scientists are presently also working on the specific and efficient capture of visible light by means of these antennas and on focusing this light on a few 10 nm, the objective being e.g. the optimization of photovoltaic modules.

####

About Karlsruhe Institute of Technology (KIT)
Karlsruhe Institute of Technology (KIT) is a public corporation and state institution of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf
Pressestelle
Phone: +49 721 608-8126
Fax: +49 721 608-3658
monika landgrafSke0∂kit edu

Copyright © Karlsruhe Institute of Technology (KIT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Discoveries

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project