Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > INL, ISU team on nanoparticle production breakthrough

Precision Nanoparticles could enable photovoltaic cells to harness a much bigger chunk of the sun’s radiation spectrum.
Precision Nanoparticles could enable photovoltaic cells to harness a much bigger chunk of the sun’s radiation spectrum.

Abstract:
Every hour, the sun floods Earth with more energy than the entire world consumes in a year. Yet solar power accounts for less than 0.002 percent of all electricity generated in the United States, primarily because photovoltaic cells remain expensive and relatively inefficient.

But solar may not be such a marginal power source for long. Chemists at Idaho National Laboratory and Idaho State University have invented a way to manufacture highly precise, uniform nanoparticles to order. The technology, Precision Nanoparticles, has the potential to vastly improve the solar cell and further spur the growing nanotech revolution.

INL, ISU team on nanoparticle production breakthrough

Idaho Falls, ID | Posted on October 19th, 2009

A scientific gold rush
Nanoparticles are motes of matter tens of thousands of times smaller than the width of a human hair. Because they're so small, a large percentage of nanoparticles' atoms reside on their surfaces rather than in their interiors. This means surface interactions dominate nanoparticle behavior. And, for this reason, they often have different characteristics and properties than larger chunks of the same material.

While scientists have just begun to exploit nanoparticles, they already show great promise in a number of fields, from medicine to manufacturing to energy. For example, embedding certain nanoparticle types in building materials makes structures stronger and more corrosion-resistant. And nano-engineered transistors are smaller, faster and more efficient than traditional ones.

"Nanoparticles are the scientific gold rush of the next generation," says INL chemist Bob Fox, who helped develop the Precision Nanoparticles technology. "They'll change our lives the way personal computers have."

Because the properties of nanoparticles are so size-dependent, any little dimensional tweak can make a big difference. Thus a key to harnessing the potential of nanoparticles lies in the ability to produce them at certain prescribed sizes, with tiny margins of error. This capability has proven elusive, but it is just what Precision Nanoparticles delivers.

A new way to make nanoparticles
A few years ago, Fox and ISU chemists Joshua Pak and Rene Rodriguez began looking for a better way to make semiconducting components for solar cells. Specifically, they wanted to improve how raw materials are transformed into semiconducting nanoparticles. The industry's established method of doing this is relatively imprecise and energy-intensive, requiring temperatures around 300 degrees Celsius.

The team hit upon the idea of using "supercritical" carbon dioxide to streamline the reaction. Supercritical fluids are a bit like a mix between a gas and a liquid. They can diffuse through solids, for example, but also dissolve substances like a liquid does. Supercritical carbon dioxide has been used for years to decaffeinate coffee.

But when Fox, Pak and Rodriguez introduced supercritical carbon dioxide into their reaction vessel, the only immediately noticeable result was a thick yellow goop.

"We thought it was a failed experiment," Fox says.

But when the chemists looked more closely, they discovered the goop was full of very small, incredibly uniform semiconducting nanoparticles. The same reaction, roughly, that industry uses to transform raw materials into semiconducting nanoparticles had taken place — but it generated a better, less variable product.

"We didn't expect that doing this would give us such homogeneity," Fox says. "That was really exciting." And because the new reaction could proceed at a much lower temperature — 65 degrees Celsius rather than 300 — it also promised to save a great deal of money and energy.

After tinkering with the reaction, Fox, Pak and Rodriguez figured out how to control nanoparticle size with unprecedented precision. They can now produce prescribed particles between 1 and 100 nanometers, hitting the mark every time with great accuracy. In July, R&D magazine recognized the breakthrough technology as one of its top 100 innovations of 2009 — a prestigious award commonly referred to as an "Oscar of invention". And in September, the work won the Early-Stage Innovation of the Year prize in the Stoel Rives Idaho Innovation Awards.

Fox, Pak and Rodriguez have licensed the technology to Precision Nanoparticles, Inc. The relatively new Seattle company is poised to begin production of tailor-made nanoparticles for the photovoltaic industry.

A better solar cell
The aims of the INL and ISU chemists — and of Precision Nanoparticles, Inc. — are to make solar cells more efficient and, ultimately, solar energy more practical.

In a solar cell, photons strike atoms of a semiconducting material — historically, silicon — knocking loose some electrons. These liberated electrons then flow in a single direction, generating direct-current electricity. The amount of energy needed to jar electrons loose is specific to each material and corresponds to only a tiny sliver of the sun's radiation spectrum. This fact explains why the efficiency of most current cells maxes out at around 20 percent.

To knock an electron free from silicon, for example, an incoming photon must have an energy of about 1.3 electron volts. This energy is known as silicon's band gap, and it corresponds to a photon wavelength of 950 nanometers or so. Photons with lower energies — and thus longer wavelengths — won't do the job. Shorter-wavelength photons will, but their energy above 1.3 electron volts is wasted, dissipated as heat. This is a big deal, because the most abundant photons from sunlight occur between 500 and 600 nanometers (which our eyes register as greens and yellows) — meaning that most current photocells waste a lot of energy.

Engineers have been working hard to harness more of the solar spectrum, to design cells that put low-energy photons to work and use high-energy photons more efficiently. One way to do this is to build composite cells with layers of different semiconductors. Slapping a film of copper indium sulfide atop a band of silicon, say, increases a cell's photon-catching power. But building such devices is expensive and technologically tricky.

"The different layers don't play well together," Fox says.

That's where the Precision Nanoparticles technology comes in. One of the many properties that changes with a nanoparticle's size is its band gap. Because Fox and his team learned how to control nanoparticle dimensions so precisely, it may soon be possible to manufacture — from a single material — semiconductor building blocks tuned to specific wavelengths of light. A photovoltaic cell made of such building blocks could capture huge swathes of the solar energy spectrum. And since the cells would contain only a single semiconducting material, they would be much cheaper, more efficient and easier to construct than current multi-layer designs.

Some cells' semiconductor nanoparticles, Fox believes, could even be tuned to pick up infrared wavelengths — heat, which radiates off rocks, buildings, roads and parking lots deep into the night.

"So your solar panel could be working long after you've gone to bed," he says.

Beyond solar power
While Precision Nanoparticles' most immediate applications come in the field of its birth, photovoltaics, potential uses don't stop there. For example, the technology could also greatly advance ultracapacitor research. Ultracapacitors store electrical energy quickly and effectively, and they may someday replace batteries in electric cars and plug-in hybrids. At least one material, vanadium nitride, has much higher ultracapacitance in nano-form — but only if the nanoparticles are of strictly uniform size, Fox says.

To fully blossom, the nanotech revolution will require the control needed to produce such uniformity. Technologies like that developed by Fox, Pak and Rodriguez may be able to provide this control, delivering particles of predictable size with predictable properties. As a result, nanoparticles could find their way into more designs, and more products.

"The only thing limiting us at this point is our imagination," Fox says.

Feature

####

About Idaho National Laboratory
In operation since 1949, INL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy's missions in nuclear and energy research, science, and national defense.

For more information, please click here

Contacts:
Idaho National Laboratory
2025 Fremont Avenue
Idaho Falls, ID 83415
866-495-7440

Copyright © Idaho National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View the precision nanoparticles video.

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Laboratories

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Videos/Movies

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Deben reports on the research of Dr Sunita Ho from UCSF using a CCT500 tensile stage to study the behaviour of dental materials April 14th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

A KAIST research team develops a hyper-stretchable elastic-composite energy harvester April 13th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Materials/Metamaterials

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Combined effort for structural determination April 15th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Energy

Better battery imaging paves way for renewable energy future April 20th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Quantum Dots/Rods

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Solar/Photovoltaic

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Use Ultrasound Waves to Produce Fullerene April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project