Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists Measure Elusive ‘Persistent Current’ That Flows Forever

Harris made the first definitive measurement of an electric current that flows continuously in tiny, but ordinary, metal rings. (Photo: Jack Harris/Yale University)
Harris made the first definitive measurement of an electric current that flows continuously in tiny, but ordinary, metal rings. (Photo: Jack Harris/Yale University)

Abstract:
Physicists at Yale University have made the first definitive measurements of "persistent current," a small but perpetual electric current that flows naturally through tiny rings of metal wire even without an external power source.

Physicists Measure Elusive ‘Persistent Current’ That Flows Forever

New Haven, CT | Posted on October 15th, 2009

The team used nanoscale cantilevers, an entirely novel approach, to indirectly measure the current through changes in the magnetic force it produces as it flows through the ring. "They're essentially little floppy diving boards with the rings sitting on top," said team leader Jack Harris, associate professor of physics and applied physics at Yale. The findings appear in the October 9 issue of Science.

The counterintuitive current is the result of a quantum mechanical effect that influences how electrons travel through metals, and arises from the same kind of motion that allows the electrons inside an atom to orbit the nucleus forever. "These are ordinary, non-superconducting metal rings, which we typically think of as resistors," Harris said. "Yet these currents will flow forever, even in the absence of an applied voltage."

Although persistent current was first theorized decades ago, it is so faint and sensitive to its environment that physicists were unable to accurately measure it until now. It is not possible to measure the current with a traditional ammeter because it only flows within the tiny metal rings, which are about the same size as the wires used on computer chips.

Past experiments tried to indirectly measure persistent current via the magnetic field it produces (any current passing through a metal wire produces a magnetic field). They used extremely sensitive magnetometers known as superconducting quantum interference devices, or SQUIDs, but the results were inconsistent and even contradictory.

"SQUIDs had long been established as the tool used to measure extremely weak magnetic fields. It was extremely optimistic for us to think that a mechanical device could be more sensitive than a SQUID," Harris said.

The team used the cantilevers to detect changes in the magnetic field produced by the current as it changed direction in the aluminum rings. This new experimental setup allowed the team to make measurements a full order of magnitude more precise than any previous attempts. They also measured the persistent current over a wider range of temperature, ring size and magnetic field than ever before.

"These measurements could tell us something about how electrons behave in metals," Harris said, adding that the findings could lead to a better understanding of how qubits, used in quantum computing, are affected by their environment, as well as which metals could potentially be used as superconductors.

Authors of the paper include Ania Bleszynski-Jayich, William Shanks, Bruno Peaudecerf, Eran Ginossar, Leonid Glazman and Jack Harris (all of Yale University) and Felix von Oppen (Freie Universität Berlin).

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
Press Contacts:

Suzanne Taylor Muzzin
203-432-8555

Bill Hathaway
203-432-1322

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Possible Futures

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Announcements

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project