Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists to use artificial photosynthesis and nanotubes to generate hydrogen fuel with sunlight: US Department of Enregy awards $1.7 million to explore new 'green' energy creation

Abstract:
A team of four chemists at the University of Rochester have begun work on a new kind of system to derive usable hydrogen fuel from water using only sunlight.

The project has caught the attention of the U.S. Department of Energy, which has just given the team nearly $1.7 million to pursue the design.

Scientists to use artificial photosynthesis and nanotubes to generate hydrogen fuel with sunlight: US Department of Enregy awards $1.7 million to explore new 'green' energy creation

Rochester, NY | Posted on October 14th, 2009

"Everybody talks about using hydrogen as a super-green fuel, but actually generating that fuel without using some other non-green energy in the process is not easy," says Kara Bren, professor in the Department of Chemistry. "People have used sunlight to derive hydrogen from water before, but the trick is making the whole process efficient enough to be useful."

Bren and the rest of the Rochester team—Professor of Chemistry Richard Eisenberg, and Associate Professors of Chemistry Todd Krauss, and Patrick Holland—will be investigating artificial photosynthesis, which uses sunlight to carry out chemical processes much as plants do. What makes the Rochester approach different from past attempts to use sunlight to produce hydrogen from water, however, is that the device they are preparing is divided into three "modules" that allow each stage of the process to be manipulated and optimized far more easily than other methods.

The first module uses visible light to create free electrons. A complex natural molecule called a chromophore that plants use to absorb sunlight will be re-engineered to efficiently generate reducing electrons.

The second module will be a membrane suffused with carbon nanotubes to act as molecular wires so small that they are only one-millionth the thickness of a human hair. To prevent the chromophores from re-absorbing the electrons, the nanotube membrane channels the electrons away from the chromophores and toward the third module.

In the third module, catalysts put the electrons to work forming hydrogen from water. The hydrogen can then be used in fuel cells in cars, homes, or power plants of the future.

By separating the first and third modules with the nanotube membrane, the chemists hope to isolate the process of gathering sunlight from the process of generating hydrogen. This isolation will allow the team to maximize the system's light-harvesting abilities without altering its hydrogen-generation abilities, and vice versa. Bren says this is a distinct advantage over other systems that have integrated designs because in those designs a change that enhances one trait may degrade another unpredictably and unacceptably.

Bren says it may be years before the team has a system that clearly works better than other designs, and even then the system would have to work efficiently enough to be commercially viable. "But if we succeed, we may be able to not only help create a fuel that burns cleanly, but the creation of the fuel itself may be clean."

####

About University of Rochester
The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

For more information, please click here

Contacts:
Jonathan Sherwood

585-273-4726

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Announcements

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Energy

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project