Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCSC nanopore project wins $1.1 million NIH grant

Abstract:
The National Human Genome Research Institute (NHGRI) has awarded a $1.1 million grant to researchers in the Jack Baskin School of Engineering at UC Santa Cruz to support their work on nanopore technology for analyzing DNA.

UCSC nanopore project wins $1.1 million NIH grant

Santa Cruz, CA | Posted on October 14th, 2009

Led by biomolecular engineers Mark Akeson and David Deamer, the UCSC nanopore group has pioneered a technology based on a tiny pore in a membrane, called a "nanopore" because it is just 1.5 nanometers wide at its narrowest point. The nanopore is formed by a self-assembling protein complex called an ion channel and is just big enough to allow a single strand of DNA to pass through. Researchers use the nanopore device to obtain precise measurements of DNA structure and dynamics as the molecule passes through the pore.

A primary goal of the project is to develop nanopore technology as a fast and inexpensive method for DNA sequencing. Medical diagnosis and treatment is being revolutionized by tools that enable doctors to quickly obtain detailed genetic information about their patients. That genetic information is encoded in the sequence of nucleotide subunits in DNA molecules. Despite many advances in sequencing technology, however, DNA sequencing is still too expensive and time-consuming for routine clinical use.

Akeson, a professor of biomolecular engineering, said the UCSC nanopore group has made progress recently by coupling DNA-binding enzymes to the nanopore. DNA polymerases are enzymes involved in the replication of DNA in cells. When coupled to the nanopore, the enzymes control the movement of the DNA molecule through the pore.

"We are borrowing from nature, which has developed this molecular machinery to replicate DNA in cells," Akeson said. "The polymerase controls the rate at which the DNA is processed through the nanopore sensor, operating in the range of 1 to 100 milliseconds per nucleotide. It also regulates the distance the DNA molecule moves, so that it advances one nucleotide at a time."

In the work funded by the NHGRI grant, the researchers are focusing on experiments to measure the effects of voltage and other variables on how efficiently the nanopore system can control and process long DNA molecules (up to 2,500 nucleotides in length). The new grant was funded through the economic stimulus bill (the American Recovery and Reinvestment Act).

Since its beginnings in 1996, the UCSC nanopore project has grown into a large collaborative effort within the Baskin School of Engineering. In addition to Akeson and Deamer, a research professor of biomolecular engineering, the group now includes William Dunbar, assistant professor of computer engineering; Hongyun Wang, professor of applied math and statistics; and senior investigators Kate Lieberman, Felix Olasagasti, and Robin Abu-Shumays. Graduate students Noah Wilson, Daniel Garalde, and Nick Hurt are also associated with the nanopore group, as are six undergraduates.

"Some of the most promising work we do is coming from the undergrads in our lab," Akeson said. "One of our laboratories and four of our state-of-the-art nanopore devices are currently devoted to experiments by these students."

The nanopore technology developed at UCSC has been licensed by Oxford Nanopore Technologies of Oxford, U.K., which is developing nanopore technology for DNA sequencing and other potential applications. The UCSC Office for Management of Intellectual Property was instrumental in negotiating a favorable agreement with the company, Akeson said.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495


Note to reporters:
You may contact
Mark Akeson
(831) 459-5157

Copyright © UCSC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Patents/IP/Tech Transfer/Licensing

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project