Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > UCSC nanopore project wins $1.1 million NIH grant

The National Human Genome Research Institute (NHGRI) has awarded a $1.1 million grant to researchers in the Jack Baskin School of Engineering at UC Santa Cruz to support their work on nanopore technology for analyzing DNA.

UCSC nanopore project wins $1.1 million NIH grant

Santa Cruz, CA | Posted on October 14th, 2009

Led by biomolecular engineers Mark Akeson and David Deamer, the UCSC nanopore group has pioneered a technology based on a tiny pore in a membrane, called a "nanopore" because it is just 1.5 nanometers wide at its narrowest point. The nanopore is formed by a self-assembling protein complex called an ion channel and is just big enough to allow a single strand of DNA to pass through. Researchers use the nanopore device to obtain precise measurements of DNA structure and dynamics as the molecule passes through the pore.

A primary goal of the project is to develop nanopore technology as a fast and inexpensive method for DNA sequencing. Medical diagnosis and treatment is being revolutionized by tools that enable doctors to quickly obtain detailed genetic information about their patients. That genetic information is encoded in the sequence of nucleotide subunits in DNA molecules. Despite many advances in sequencing technology, however, DNA sequencing is still too expensive and time-consuming for routine clinical use.

Akeson, a professor of biomolecular engineering, said the UCSC nanopore group has made progress recently by coupling DNA-binding enzymes to the nanopore. DNA polymerases are enzymes involved in the replication of DNA in cells. When coupled to the nanopore, the enzymes control the movement of the DNA molecule through the pore.

"We are borrowing from nature, which has developed this molecular machinery to replicate DNA in cells," Akeson said. "The polymerase controls the rate at which the DNA is processed through the nanopore sensor, operating in the range of 1 to 100 milliseconds per nucleotide. It also regulates the distance the DNA molecule moves, so that it advances one nucleotide at a time."

In the work funded by the NHGRI grant, the researchers are focusing on experiments to measure the effects of voltage and other variables on how efficiently the nanopore system can control and process long DNA molecules (up to 2,500 nucleotides in length). The new grant was funded through the economic stimulus bill (the American Recovery and Reinvestment Act).

Since its beginnings in 1996, the UCSC nanopore project has grown into a large collaborative effort within the Baskin School of Engineering. In addition to Akeson and Deamer, a research professor of biomolecular engineering, the group now includes William Dunbar, assistant professor of computer engineering; Hongyun Wang, professor of applied math and statistics; and senior investigators Kate Lieberman, Felix Olasagasti, and Robin Abu-Shumays. Graduate students Noah Wilson, Daniel Garalde, and Nick Hurt are also associated with the nanopore group, as are six undergraduates.

"Some of the most promising work we do is coming from the undergrads in our lab," Akeson said. "One of our laboratories and four of our state-of-the-art nanopore devices are currently devoted to experiments by these students."

The nanopore technology developed at UCSC has been licensed by Oxford Nanopore Technologies of Oxford, U.K., which is developing nanopore technology for DNA sequencing and other potential applications. The UCSC Office for Management of Intellectual Property was instrumental in negotiating a favorable agreement with the company, Akeson said.


For more information, please click here

Tim Stephens
(831) 459-2495

Note to reporters:
You may contact
Mark Akeson
(831) 459-5157

Copyright © UCSC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoScience: Giants of the Infinitesimal July 31st, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014


New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014


New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014


NanoScience: Giants of the Infinitesimal July 31st, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014


New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE