Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New nanotech sensor developed with medical, chemistry applications

Abstract:
Researchers at Oregon State University and other institutions have developed a new "plasmonic nanorod metamaterial" using extraordinarily tiny rods of gold that will have important applications in medical, biological and chemical sensors.

New nanotech sensor developed with medical, chemistry applications

Corvallis, OR | Posted on October 13th, 2009

The new device is at least 10 times more sensitive than existing technology, researchers say, can be tuned to sense different types of materials and is easy to make in differing sizes for individual needs. It's one of the first real applications of "metamaterials" - artificial materials that have unusual properties based on their structure, which are not readily available in nature.

The findings were announced today in Nature Materials, a professional journal. Collaborators on the project included OSU, the Universite de Mediterranee in France, Ecole Polytechnique de Montreal in Canada, and the Queen's University of Belfast in the United Kingdom. The research was supported by the National Science Foundation and other agencies.

"This is very exciting," said Viktor Podolskiy, an associate professor of physics at OSU. "It's an important new application of nanotechnology and the field of metamaterials, and should find some significant uses in medicine, chemistry and physics."

The new material is made primarily from gold, but given the minuscule size of the device, the high cost of gold is actually of little importance - and the use of gold aids its performance, because this rare metal is very inert and doesn't interact with biological or many other molecules. The device is a little like the bristles that stick up on a hairbrush, but in this case the bristles are only about 20 nanometers wide - it would take 5,000 such bristles to be the width of a human hair.

Using this device and various optical techniques, sensors can determine very precisely the identity and amount of various substances, including extremely small compounds such as drugs, vitamins or hormones. The concept should find near-term applications in medicine and other fields, scientists say.

####

For more information, please click here

Contacts:
Viktor Podolskiy

541-737-1702

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Chemistry

Chemical cages: New technique advances synthetic biology February 10th, 2016

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic