Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanotech sensor developed with medical, chemistry applications

Abstract:
Researchers at Oregon State University and other institutions have developed a new "plasmonic nanorod metamaterial" using extraordinarily tiny rods of gold that will have important applications in medical, biological and chemical sensors.

New nanotech sensor developed with medical, chemistry applications

Corvallis, OR | Posted on October 13th, 2009

The new device is at least 10 times more sensitive than existing technology, researchers say, can be tuned to sense different types of materials and is easy to make in differing sizes for individual needs. It's one of the first real applications of "metamaterials" - artificial materials that have unusual properties based on their structure, which are not readily available in nature.

The findings were announced today in Nature Materials, a professional journal. Collaborators on the project included OSU, the Universite de Mediterranee in France, Ecole Polytechnique de Montreal in Canada, and the Queen's University of Belfast in the United Kingdom. The research was supported by the National Science Foundation and other agencies.

"This is very exciting," said Viktor Podolskiy, an associate professor of physics at OSU. "It's an important new application of nanotechnology and the field of metamaterials, and should find some significant uses in medicine, chemistry and physics."

The new material is made primarily from gold, but given the minuscule size of the device, the high cost of gold is actually of little importance - and the use of gold aids its performance, because this rare metal is very inert and doesn't interact with biological or many other molecules. The device is a little like the bristles that stick up on a hairbrush, but in this case the bristles are only about 20 nanometers wide - it would take 5,000 such bristles to be the width of a human hair.

Using this device and various optical techniques, sensors can determine very precisely the identity and amount of various substances, including extremely small compounds such as drugs, vitamins or hormones. The concept should find near-term applications in medicine and other fields, scientists say.

####

For more information, please click here

Contacts:
Viktor Podolskiy

541-737-1702

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Chemistry

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project