Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Engineering low-cost energy from plastic photovoltaics

October 8th, 2009

Engineering low-cost energy from plastic photovoltaics

Abstract:
David Lidzey and James Kingsley

Optimization of new and existing conjugated polymers for solar cells helps bring inexpensive renewable electricity closer to reality.

Over the last five years, many research groups3 have studied OPVs based on the polymer poly(3-hexylthiophene) (P3HT) and fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM). These materials can form an interpenetrating network of nanoscale domains. When incident light excites an electron-hole pair in the P3HT, the electron hops across to the PCBM because of its different electronic-energy levels. This produces separated charges that can be extracted at the device electrodes to generate electricity. Unfortunately, the low optical absorption of P3HT in the near-IR and poorly matched energy levels result in a fundamental limit to the power efficiency that can be obtained from P3HT/PCBM devices. Nevertheless, the amount of existing research on these materials and their commercial availability make them an excellent test system for OPV research.

Over the last year, we have invested significant effort into understanding and optimizing P3HT/PCBM thin-film device fabrication. Wide-ranging improvements have enabled us to produce consistently high-performing OPVs. In particular, we have optimized device efficiency by varying film thickness and exploring the effect of varying the relative ratio of P3HT and PCBM in the composite film. The P3HT/PCBM films are cast from solution, and so we looked at the type of solvent used for casting. We investigated different techniques to ‘grow' a nanoscale-network-like structure of efficient charge-transporting pathways within the film, such as thermal annealing at various temperatures, and the use of a plasticizing solvent vapor to promote crystallization of the P3HT molecules. The latter technique increases hole mobility within the film and also extends the device sensitivity to red light.

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project