Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Engineering low-cost energy from plastic photovoltaics

October 8th, 2009

Engineering low-cost energy from plastic photovoltaics

Abstract:
David Lidzey and James Kingsley

Optimization of new and existing conjugated polymers for solar cells helps bring inexpensive renewable electricity closer to reality.

Over the last five years, many research groups3 have studied OPVs based on the polymer poly(3-hexylthiophene) (P3HT) and fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM). These materials can form an interpenetrating network of nanoscale domains. When incident light excites an electron-hole pair in the P3HT, the electron hops across to the PCBM because of its different electronic-energy levels. This produces separated charges that can be extracted at the device electrodes to generate electricity. Unfortunately, the low optical absorption of P3HT in the near-IR and poorly matched energy levels result in a fundamental limit to the power efficiency that can be obtained from P3HT/PCBM devices. Nevertheless, the amount of existing research on these materials and their commercial availability make them an excellent test system for OPV research.

Over the last year, we have invested significant effort into understanding and optimizing P3HT/PCBM thin-film device fabrication. Wide-ranging improvements have enabled us to produce consistently high-performing OPVs. In particular, we have optimized device efficiency by varying film thickness and exploring the effect of varying the relative ratio of P3HT and PCBM in the composite film. The P3HT/PCBM films are cast from solution, and so we looked at the type of solvent used for casting. We investigated different techniques to ‘grow' a nanoscale-network-like structure of efficient charge-transporting pathways within the film, such as thermal annealing at various temperatures, and the use of a plasticizing solvent vapor to promote crystallization of the P3HT molecules. The latter technique increases hole mobility within the film and also extends the device sensitivity to red light.

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Environment

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project