Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Engineering low-cost energy from plastic photovoltaics

October 8th, 2009

Engineering low-cost energy from plastic photovoltaics

Abstract:
David Lidzey and James Kingsley

Optimization of new and existing conjugated polymers for solar cells helps bring inexpensive renewable electricity closer to reality.

Over the last five years, many research groups3 have studied OPVs based on the polymer poly(3-hexylthiophene) (P3HT) and fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM). These materials can form an interpenetrating network of nanoscale domains. When incident light excites an electron-hole pair in the P3HT, the electron hops across to the PCBM because of its different electronic-energy levels. This produces separated charges that can be extracted at the device electrodes to generate electricity. Unfortunately, the low optical absorption of P3HT in the near-IR and poorly matched energy levels result in a fundamental limit to the power efficiency that can be obtained from P3HT/PCBM devices. Nevertheless, the amount of existing research on these materials and their commercial availability make them an excellent test system for OPV research.

Over the last year, we have invested significant effort into understanding and optimizing P3HT/PCBM thin-film device fabrication. Wide-ranging improvements have enabled us to produce consistently high-performing OPVs. In particular, we have optimized device efficiency by varying film thickness and exploring the effect of varying the relative ratio of P3HT and PCBM in the composite film. The P3HT/PCBM films are cast from solution, and so we looked at the type of solvent used for casting. We investigated different techniques to ‘grow' a nanoscale-network-like structure of efficient charge-transporting pathways within the film, such as thermal annealing at various temperatures, and the use of a plasticizing solvent vapor to promote crystallization of the P3HT molecules. The latter technique increases hole mobility within the film and also extends the device sensitivity to red light.

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Environment

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project